Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Z. Kh. Rakhmonov"'
Autor:
Z. Kh. Rakhmonov
Publikováno v:
Chebyshevskii sbornik. 23:156-168
Publikováno v:
Chebyshevskii sbornik. 20:271-293
Autor:
Z. Kh. Rakhmonov, F.Z. Rakhmonov
Publikováno v:
Chebyshevskii sbornik. 20:246-270
Autor:
Z. Kh. Rakhmonov
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 299:219-245
For a nonprincipal character χ modulo D, we prove a nontrivial estimate of the form Σn≤x Λ(n)χ(n − l) $$ \ll x\exp \{ - 0.6\sqrt {\ln D} \} $$ for the sum of values of χ over a sequence of shifted primes in the case when x ≥ D1/2+e, (l,D)
Autor:
Z. Kh. Rakhmonov, F. Z. Rakhmonov
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 296:211-233
For y ≥ x 4/5 L 8B+151 (where L = log(xq) and B is an absolute constant), a nontrivial estimate is obtained for short cubic exponential sums over primes of the form S 3(α; x, y) = ∑ x−y
Autor:
Z. Kh. Rakhmonov
Publikováno v:
Mathematical Notes. 95:407-417
We prove an asymptotic formula for the number of representations of a sufficiently large natural number N as the sum of two primes p1 and p2 and the cube of a natural numbermsatisfying the conditions |pi − N/3| ≤ H, |m3 − N/3| ≤ H, H ≥ N5/6
Autor:
Z. Kh. Rakhmonov
Publikováno v:
Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics. 13:113-117
Autor:
Z. Kh. Rakhmonov
Publikováno v:
Mathematical Notes. 74:534-542
We prove an asymptotic formula for the number of representations of a sufficiently large positive integer N as the sum of two primes and the square of a natural number when they are almost equal.
Autor:
Z Kh Rakhmonov
Publikováno v:
Russian Academy of Sciences. Izvestiya Mathematics. 44:555-569
A new estimate is obtained for the mean values of Chebyshev functions over all primitive characters whose modulus does not exceed a given quantity.
Autor:
Z Kh Rakhmonov
Publikováno v:
Russian Academy of Sciences. Izvestiya Mathematics. 43:49-64
A new bound for the mean values of Chebyshev functions, taken over all Dirichlet characters, is obtained.