Zobrazeno 1 - 10
of 78
pro vyhledávání: '"Zúñiga, Andrés A."'
In this paper, we introduce a new class of quasilinear operators, which represents a nonlocal version of the operator studied by Stuart and Zhou [1], inspired by models in nonlinear optics. We will study the existence of at least one or two solutions
Externí odkaz:
http://arxiv.org/abs/2412.08427
The liquid drop model was introduced by Gamow in 1928 and Bohr-Wheeler in 1938 to model atomic nuclei. The model describes the competition between the surface tension, which keeps the nuclei together, and the Coulomb force, corresponding to repulsion
Externí odkaz:
http://arxiv.org/abs/2409.14892
Autor:
Dolbeault, Jean, Zuniga, Andres
On the Euclidean space, we establish some Weighted Logarithmic Sobolev (WLS) inequalities. We characterize a symmetry range in which optimal functions are radially symmetric, and a symmetry breaking range. (WLS) inequalities are a limit case for a fa
Externí odkaz:
http://arxiv.org/abs/2210.12488
Autor:
Lamy, Xavier, Zúñiga, Andrés
We study the linear stability of entire radial solutions $u(re^{i\theta})=f(r)e^{i\theta}$, with positive increasing profile $f(r)$, to the anisotropic Ginzburg-Landau equation \[ -\Delta u -\delta (\partial_x+i\partial_y)^2\bar u =(1-|u|^2)u,\quad -
Externí odkaz:
http://arxiv.org/abs/2106.16063
We consider the minimization of an energy functional given by the sum of a density perimeter and a nonlocal interaction of Riesz type with exponent $\alpha$, under volume constraint, where the strength of the nonlocal interaction is controlled by a p
Externí odkaz:
http://arxiv.org/abs/2006.16278
Publikováno v:
In Advances in Space Research 15 July 2023 72(2):518-528
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We are concerned with conservative systems $\ddot{q}=\nabla V(q), \; q\in\mathbb{R}^N$ for a general class of potentials $V\in C^1(\mathbb{R}^N)$. Assuming that a given sublevel set $\{V\leq c\}$ splits in the disjoint union of two closed subsets $\m
Externí odkaz:
http://arxiv.org/abs/1901.06951
Autor:
Zuniga, Andres
We revisit the question of existence and regularity of minimizers to weighted least gradient problems on a fixed bounded domain, subject to a Dirichlet boundary condition, in the case where the boundary data is continuous and the weight function is C
Externí odkaz:
http://arxiv.org/abs/1709.00502
Autor:
Zuniga, Andres, Sternberg, Peter
We revisit the existence problem of heteroclinic connections in $\mathbb{R}^N$ associated with Hamiltonian systems involving potentials $W:\mathbb{R}^N\to \mathbb{R}$ having several global minima. Under very mild assumptions on $W$ we present a simpl
Externí odkaz:
http://arxiv.org/abs/1604.03645