Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Yves Martinez-Maure"'
Autor:
Yves Martinez-Maure
Publikováno v:
Canadian Mathematical Bulletin. 65:552-556
In response to an open problem raised by S. Rabinowitz, we prove that $$ \begin{align*} \begin{array} [c]{l} \left( \left( x^{2}+y^{2}\right) {}^{2}+8y\left( y^{2}-3x^{2}\right) \right) {}^{2}+432y\left( y^{2}-3x^{2}\right) \left( 351-10\left( x^{2}+
Autor:
Yves Martinez-Maure, David Rochera
Publikováno v:
Journal of Geometry and Physics. 182:104664
Autor:
Yves Martinez-Maure
Classical (real) hedgehogs can be regarded as the geometrical realiza-tions of formal di¤erences of convex bodies in R n+1. Like convex bodies, hedgehogs can be identi…ed with their support functions. Adopting a pro-jective viewpoint, we prove tha
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e21fe573a9554ea5487e5fdcf3762772
https://hal.archives-ouvertes.fr/hal-02948386/document
https://hal.archives-ouvertes.fr/hal-02948386/document
Autor:
Yves Martinez-Maure
Publikováno v:
Monatshefte für Mathematik. 182:65-76
We give, under appropriate regularity assumptions, a strengthening of the Aleksandrov–Fenchel inequality in the form of a stability estimate.
Autor:
Yves Martinez-Maure
Publikováno v:
Discrete Mathematics. 343:111770
We give a set of conditions that is necessary and sufficient for the existence and uniqueness up to translations of a 3-dimensional polytope P in R 3 having N facets with given unit outward normal vectors n 1 , … , n N and corresponding facet perim
Autor:
Yves Martinez-Maure
In this paper, we will try to argue and to show through fundamental examples that (a very huge class of) marginally trapped surfaces arise naturally from a ‘lightlike co-contact structure’, exactly in the same way as Legendrian fronts arise from
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5649c95cc2022ec2e335e1d7276103d3
https://hal.archives-ouvertes.fr/hal-01627452v2/document
https://hal.archives-ouvertes.fr/hal-01627452v2/document
Autor:
Yves Martinez-Maure
Publikováno v:
Recercat. Dipósit de la Recerca de Catalunya
instname
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publ. Mat. 59, no. 2 (2015), 339-351
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
instname
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publ. Mat. 59, no. 2 (2015), 339-351
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Hedgehogs are (possibly singular and self-intersecting) hypersurfaces that describe Minkowski differences of convex bodies in $\mathbb{R}^{n+1}$. They are the natural geometrical objects when one seeks to extend parts of the Brunn-Minkowski theory to
Autor:
Yves Martinez-Maure
Publikováno v:
Results in Mathematics. 63:973-983
We consider Gauss rigidity and Gauss infinitesimal rigidity for hedgehogs of \({\mathbb{R}^{3}}\) (regarded as Minkowski differences of closed convex surfaces of \({\mathbb{R}^{3}}\) with positive Gaussian curvature). Besides, we prove under an appro
Autor:
Yves Martinez-Maure
Publikováno v:
Comptes Rendus Mathematique. 348:1307-1310
Resume En introduisant une notion de derivation des surfaces convexes de R 3 dans l'espace de Lorentz–Minkowski R 3 , 1 , nous donnons pour les surfaces convexes de R 3 un equivalent naturel d'une majoration du deficit isoperimetrique des courbes c
Autor:
Yves Martinez-Maure
Publikováno v:
European Journal of Combinatorics. 31:1037-1049
The aim of this paper is to introduce new tools for studying the following two important and difficult problems in R^3: (1) The Minkowski problem (to prescribe the Gauss curvature) for hedgehogs (i.e., for Minkowski differences of convex bodies); (2)