Zobrazeno 1 - 10
of 52
pro vyhledávání: '"Yvan Velenik"'
Publikováno v:
Communications in Mathematical Physics. 399:1103-1138
We consider the Random-Cluster model on $\mathbb{Z}^d$ with interactions of infinite range of the form $J_x = \psi(x)\mathsf{e}^{-\rho(x)}$ with $\rho$ a norm on $\mathbb{Z}^d$ and $\psi$ a subexponential correction. We first provide an optimal crite
Publikováno v:
Physical Review. E, Vol. 103, No 5 (2021) P. L050104
We report on recent results that show that the pair correlation function of systems with exponentially decaying interactions can fail to exhibit Ornstein-Zernike asymptotics at all sufficiently high temperatures and all sufficiently small densities.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::38c2fce2b2902bcb31a1d0363c97f218
Publikováno v:
Journal of Statistical Physics, No 180 (2020) pp. 832-861
We consider nearest-neighbor two-dimensional Potts models, with boundary conditions leading to the presence of an interface along the bottom wall of the box. We show that, after a suitable diffusive scaling, the interface weakly converges to the stan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f3e1a4f2675ee296c10bb78e9afae9e4
https://archive-ouverte.unige.ch/unige:128933
https://archive-ouverte.unige.ch/unige:128933
Autor:
Sébastien Ott, Yvan Velenik
Publikováno v:
Probability Theory and Related Fields, Vol. 175 (2019) pp. 309-340
We consider finite-range ferromagnetic Ising models on $\mathbb{Z}^d$ in the regime $\beta
Comment: Changed section numbering to match the published version
Comment: Changed section numbering to match the published version
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::304698954dc89fde7c7359f67ea7057b
https://archive-ouverte.unige.ch/unige:104016
https://archive-ouverte.unige.ch/unige:104016
Autor:
Yvan Velenik, Dmitry Ioffe
Publikováno v:
Comm. Math. Phys.
Communications in Mathematical Physics, Vol. 323, No 1 (2013) pp. 449-450
Communications in Mathematical Physics, Vol. 323, No 1 (2013) pp. 449-450
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2746e1babe318d892be80436f1d05c13
http://doc.rero.ch/record/319429/files/220_2013_Article_1768.pdf
http://doc.rero.ch/record/319429/files/220_2013_Article_1768.pdf
Publikováno v:
Comm. Math. Phys.
Communications in Mathematical Physics, Vol. 336 (2015) pp. 905-932
Communications in Mathematical Physics
Communications in Mathematical Physics, Springer Verlag, 2015, 336 (2), pp.905-932. ⟨10.1007/s00220-014-2277-5⟩
Communications in Mathematical Physics, 2015, 336 (2), pp.905-932. ⟨10.1007/s00220-014-2277-5⟩
Communications in Mathematical Physics, Vol. 336 (2015) pp. 905-932
Communications in Mathematical Physics
Communications in Mathematical Physics, Springer Verlag, 2015, 336 (2), pp.905-932. ⟨10.1007/s00220-014-2277-5⟩
Communications in Mathematical Physics, 2015, 336 (2), pp.905-932. ⟨10.1007/s00220-014-2277-5⟩
We prove an invariance principle for a class of tilted (1+1)-dimensional SOS models or, equivalently, for a class of tilted random walk bridges in Z_+. The limiting objects are stationary reversible ergodic diffusions with drifts given by the logarit
Autor:
Sacha Friedli, Yvan Velenik
Publikováno v:
Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3862295a0d9a5e89499570bb13af2dcb
https://doi.org/10.1017/9781316882603.005
https://doi.org/10.1017/9781316882603.005
Autor:
Yvan Velenik, Sacha Friedli
Publikováno v:
Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6d068e5182bb272578569f51fceae1dc
https://doi.org/10.1017/9781316882603.009
https://doi.org/10.1017/9781316882603.009
Autor:
Yvan Velenik, Sacha Friedli
Publikováno v:
Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::72ca23e2bb7be98bd958f1786745e23b
https://doi.org/10.1017/9781316882603.004
https://doi.org/10.1017/9781316882603.004