Zobrazeno 1 - 10
of 69
pro vyhledávání: '"Yusuke KUNO"'
Autor:
Saeed, Nooruldeen Ali, Tichy, Antonin, Yusuke Kuno, Keiichi Hosaka, Junji Tagami, Masatoshi Nakajima
Publikováno v:
Journal of Adhesive Dentistry; 2021, Vol. 23 Issue 4, p327-334, 8p
Autor:
Yusuke KUNO1, Masatoshi SATO2 msato@mail.dendai.ac.jp
Publikováno v:
Turkish Journal of Mathematics. 2020, Vol. 44 Issue 5, p1520-1533. 14p.
Publikováno v:
Quantum Topology. 11:657-689
Let $\Sigma$ be a compact connected oriented 2-dimensional manifold with non-empty boundary. In our previous work, we have shown that the solution of generalized (higher genus) Kashiwara-Vergne equations for an automorphism $F \in {\rm Aut}(L)$ of a
Autor:
Richard M. Foxton, Keiichi Hosaka, Junji Tagami, Celso Afonso Klein Júnior, Masaomi Ikeda, Yusuke Kuno, Masatoshi Nakajima
Publikováno v:
Dental Materials Journal. 38:892-899
The purpose was to evaluate the effect of a hydrophilic amide monomer on μTBS of one-step adhesive to dentin at different application times. Clearfil Universal Bond Quick (UBQ), experimental adhesive (UBQexp; same compositions as UBQ but hydrophilic
Autor:
Nooruldeen Ali, Saeed, Antonin, Tichy, Yusuke, Kuno, Keiichi, Hosaka, Junji, Tagami, Masatoshi, Nakajima
Publikováno v:
The journal of adhesive dentistry. 23(4)
The effect of surface moisture on bur-cut dentin on the microtensile bond strength (μTBS) of universal adhesives with various contents of 2-hydroxyethyl methacrylate (HEMA) and methacrylamide monomers was evaluated.Flat mid-coronal dentin surfaces o
Autor:
Yusuke Kuno, Kae Takezawa
Publikováno v:
Topology and its Applications. 312:108063
We study a 1-cocycle on the fatgraph complex of a punctured surface introduced by Penner. We present an explicit cobounding cochain for this cocycle, whose formula involves a summation over trivalent vertices of a trivalent fatgraph spine. In a simil
Autor:
Yusuke Kuno, Gwenael Massuyeau
Publikováno v:
Algebraic and Geometric Topology
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2021, 21 (2), pp.697-754. ⟨10.2140/agt.2021.21.697⟩
Algebraic and Geometric Topology, Mathematical Sciences Publishers, 2021, 21 (2), pp.697-754. ⟨10.2140/agt.2021.21.697⟩
Let $\Sigma$ be a compact oriented surface. The Dehn twist along every simple closed curve $\gamma \subset \Sigma$ induces an automorphism of the fundamental group $\pi$ of $\Sigma$. There are two possible ways to generalize such automorphisms if the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::11feba8572c4d088b1ea1bb2627ff9b4
https://hal.archives-ouvertes.fr/hal-02011582
https://hal.archives-ouvertes.fr/hal-02011582
Publikováno v:
Advances in Mathematics. 326:1-53
In this paper, we describe a surprising link between the theory of the Goldman–Turaev Lie bialgebra on surfaces of genus zero and the Kashiwara–Vergne (KV) problem in Lie theory. Let Σ be an oriented 2-dimensional manifold with non-empty boundar
Publikováno v:
Comptes Rendus Mathematique. 355:123-127
We define a family KV (g,n+1) KV ( g , n + 1 ) of Kashiwara–Vergne problems associated with compact connected oriented 2-manifolds of genus g with n+1 n + 1 boundary components. The problem KV (0,3) KV ( 0 , 3 ) is the classical Kashiwara–Vergne
Autor:
Masatoshi Sato, Yusuke Kuno
We give an explicit formula for the signature of handlebody bundles over the circle in terms of the homological monodromy. This gives a cobounding function of Meyer's signature cocycle on the mapping class group of a $3$-dimensional handlebody, i.e.,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7689ef537de4b84dc9ba78f87cabd62d
http://arxiv.org/abs/1904.00203
http://arxiv.org/abs/1904.00203