Zobrazeno 1 - 10
of 543
pro vyhledávání: '"Yuste S."'
Autor:
Abad, E., Yuste, S. B.
We review some representative results for first-passage problems involving so-called mortal or evanescent walkers, i.e., walkers with a finite lifetime. The mortality constraint plays a key role in the modeling of many real scenarios, as it filters o
Externí odkaz:
http://arxiv.org/abs/2410.15860
Autor:
Montero Marta, Pérez-Matute P., Yuste S., Íñiguez M., Recio-Fernández E., Motilva M-J., Leon-Espinosa G., Herreras O., Bartolomé B., Moreno-Arribas M. V.
Publikováno v:
BIO Web of Conferences, Vol 68, p 04006 (2023)
Resumen La enfermedad de Alzheimer (EA) es la forma más común de demencia y tiene una elevada morbilidad y mortalidad. La EA se caracteriza principalmente por la presencia de dos estructuras aberrantes en el cerebro de los pacientes, placas seniles
Externí odkaz:
https://doaj.org/article/333f5959852a446ba975191130e5241b
Publikováno v:
Phys. Rev. E 105, 044119 (2022)
The statistics of the first-encounter time of diffusing particles changes drastically when they are placed under confinement. In the present work, we make use of Monte Carlo simulations to study the behavior of a two-particle system in two- and three
Externí odkaz:
http://arxiv.org/abs/2201.05388
Autor:
López-Castaño, M. A., González-Saavedra, J. F., Rodríguez-Rivas, A., Abad, E., Yuste, S. B., Reyes, F. Vega
Publikováno v:
Phys. Rev. E 103, 042903 (2021)
We study in this work the dynamics of a collection of identical hollow spheres (ping-pong balls) that rest on a horizontal metallic grid. Fluidization is achieved by means of a turbulent air current coming from below. The upflow is adjusted so that t
Externí odkaz:
http://arxiv.org/abs/2006.15133
Publikováno v:
Phys. Rev. E 102, 032118 (2020)
We investigate how confinement may drastically change both the probability density of the first-encounter time and the related survival probability in the case of two diffusing particles. To obtain analytical insights into this problem, we focus on t
Externí odkaz:
http://arxiv.org/abs/2006.13563
We consider the dynamics of a separable Continuous Time Random Walk (CTRW) when the random walker is biased by a velocity field in a uniformly growing domain. Concrete examples for such domains include growing biological cells or lipid vesicles, biof
Externí odkaz:
http://arxiv.org/abs/2004.08605
Publikováno v:
Phys. Rev. E 102, 032111 (2020)
Reaction-diffusion equations are widely used as the governing evolution equations for modeling many physical, chemical, and biological processes. Here we derive reaction-diffusion equations to model transport with reactions on a one-dimensional domai
Externí odkaz:
http://arxiv.org/abs/2002.06011
Publikováno v:
Physical Review E 101, 012117 (2020)
An approach to obtain the structural properties of additive binary hard-sphere mixtures is presented. Such an approach, which is a nontrivial generalization of the one recently used for monocomponent hard-sphere fluids [S. Pieprzyk, A. C. Bra\'nka, a
Externí odkaz:
http://arxiv.org/abs/2001.06186
Publikováno v:
Phys. Rev. E 100, 012142 (2019)
We study normal diffusive and subdiffusive processes in a harmonic potential (Ornstein-Uhlenbeck process) on a uniformly growing/contracting domain. Our starting point is a recently derived fractional Fokker-Planck equation, which covers both the cas
Externí odkaz:
http://arxiv.org/abs/1904.12814
Autor:
Vot, F. Le, Yuste, S. B.
Publikováno v:
Phys. Rev. E 98, 042117 (2018)
We consider a continuous random walk model for describing normal as well as anomalous diffusion of particles subjected to an external force when these particles diffuse in a uniformly expanding (or contracting) medium. A general equation that relates
Externí odkaz:
http://arxiv.org/abs/1807.07795