Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Yuri Bregman"'
Autor:
Yochai Ben Horin, Yuri Bregman
Publikováno v:
Seismological Research Letters. 93:3396-3403
In recent decades, tripartite arrays (i.e., three-element array) have become an important tool for various seismoacoustic applications, mainly due to their superior back-azimuth estimation. However, the back azimuth is estimated assuming the far-fiel
Publikováno v:
IEEE Transactions on Geoscience and Remote Sensing. 60:1-13
Manifold learning is a branch of machine learning that focuses on compactly representing complex data-sets based on their fundamental intrinsic parameters. One such method is diffusion maps, which reduces the dimension of the data while preserving it
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ad420ac58271cb8aae646eccd8866c11
https://doi.org/10.5194/egusphere-egu22-7044
https://doi.org/10.5194/egusphere-egu22-7044
Publikováno v:
IEEE Geoscience and Remote Sensing Letters. 17:1856-1860
Detection and discrimination of seismic events have important implications. Precise detection of earthquakes may help prevent collateral damage and even save lives. On the other hand, the ability to identify explosions reliably not only helps prevent
Publikováno v:
Pure and Applied Geophysics. 178:2403-2418
In this work, an advanced machine learning technique named diffusion maps is applied for array-based earthquake-explosion discrimination. We rely on prior work that utilizes the diffusion map-based discrimination approach for data collected from a si
Autor:
Neta Rabin, Yuri Bregman
Publikováno v:
Seismological Research Letters. 90:539-545
Publikováno v:
Geophysical Journal International. 207:1484-1492
The problem of learning from seismic recordings has been studied for years. There is a growing interest of developing automatic mechanisms for identifying the properties of a seismic event. One main motivation is the ability to have a reliable identi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::015385a69b285044e41efaa97c999c39
Publikováno v:
2016 IEEE International Conference on the Science of Electrical Engineering (ICSEE).
Automatic detection and identification of seismic events is an important task that is carried out constantly for seismic monitoring. This monitoring process results in a seismic event bulletin that contains information about the detected events, thei
Conference
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.