Zobrazeno 1 - 10
of 47
pro vyhledávání: '"Yuri Berest"'
Publikováno v:
Forum of Mathematics, Sigma, Vol 9 (2021)
Let X be a simply connected closed oriented manifold of rationally elliptic homotopy type. We prove that the string topology bracket on the $S^1$-equivariant homology $ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $ of the free
Externí odkaz:
https://doaj.org/article/f42cf810c62d46428c6926d2bb29595c
Autor:
Yuri Berest, Oleg Chalykh
Publikováno v:
Communications in Mathematical Physics. 400:133-178
Publikováno v:
Letters in Mathematical Physics. 111
In previous work of the first and third authors, we proposed a conjecture that the Kauffman bracket skein module of any knot in $S^3$ carries a natural action of the rank 1 double affine Hecke algebra $SH_{q,t_1, t_2}$ depending on 3 parameters $q, t
Let $X$ be a simply connected closed oriented manifold of rationally elliptic homotopy type. We prove that the string topology bracket on the $S^1$-equivariant homology $\overline{H}_{\ast}^{S^1}(\mathcal{L}X,\mathbb{Q}) $ of the free loop space of $
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::571dcb00bc4bf51fff8cf1c61183b382
Publikováno v:
Journal of the European Mathematical Society. 19:2811-2893
Autor:
Aleksandr Nikolaevich Sergeev, Sergei Petrovich Novikov, Petr Georgievich Grinevich, Pavel Etingof, Boris Anatol'evich Dubrovin, Evgenii Vladimirovich Ferapontov, Victor Matveevich Buchstaber, Igor Krichever, Vsevolod Eduardovich Adler, Oleg Chalykh, Mikhail Vladimirovich Feigin, Yuri Berest, Giovanni Felder
Publikováno v:
Uspekhi Matematicheskikh Nauk. 71:172-188
Publikováno v:
Algebr. Geom. Topol. 19, no. 1 (2019), 281-339
Let $G$ be a reductive affine algebraic group defined over a field $k$ of characteristic zero. In this paper, we study the cotangent complex of the derived $G$-representation scheme $ {\rm DRep}_G(X)$ of a pointed connected topological space $X$. We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::de052e695a8b8bc09630dfba4f21936c
http://arxiv.org/abs/1801.01942
http://arxiv.org/abs/1801.01942
Publikováno v:
Transformation Groups. 21:35-50
Let G be the group of unimodular automorphisms of a free associative ℂ-algebra on two generators. A theorem of G. Wilson and the first author [BW] asserts that the natural action of G on the Calogero-Moser spaces Cn is transitive for all n ϵ ℕ.
In this paper, we introduce and study representation homology of topological spaces, which is a natural homological extension of representation varieties of fundamental groups. We give an elementary construction of representation homology parallel to
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::cb1b3d90efc0bf8408c8a91895dac8e2
http://arxiv.org/abs/1703.03505
http://arxiv.org/abs/1703.03505