Zobrazeno 1 - 10
of 62
pro vyhledávání: '"Yunfeng, Shao"'
Autor:
Xintong Yan, Chongda Luo, Jingjing Yang, Zhuang Wang, Yunfeng Shao, Ping Wang, Shaokang Yang, Yuexiang Li, Qingsong Dai, Wei Li, Xiaotong Yang, Huimin Tao, Sichen Ren, Zhenyang Li, Xiaojia Guo, Siqi Li, Weiyan Zhu, Yan Luo, Jiazheng Li, Song Li, Ruiyuan Cao, Wu Zhong
Publikováno v:
Viruses, Vol 16, Iss 8, p 1332 (2024)
Severe fever with thrombocytopenia syndrome virus (SFTSV), also known as the Dabie Banda virus, is an emerging tick-borne Bunyavirus that causes severe fever with thrombocytopenia syndrome (SFTS). Currently, symptomatic treatment and antiviral therap
Externí odkaz:
https://doaj.org/article/ce6fa81d161140bc8be5b8766e7db5d6
Publikováno v:
IEEE Internet of Things Journal. 10:9482-9497
Publikováno v:
Neurocomputing. 481:249-257
Autor:
Yunfeng Shao, Dongliang Liu, Liangliang Zhao, Yang Zhao, Hongmei Wang, Jing Feng, Haipeng Ren, Juan Du
Publikováno v:
2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES).
Machine learning models have been deployed in mobile networks to deal with massive data from different layers to enable automated network management and intelligence on devices. To overcome high communication cost and severe privacy concerns of centr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2634b912c2bee2e201c420c2ebe72389
http://arxiv.org/abs/2209.00195
http://arxiv.org/abs/2209.00195
Publikováno v:
2022 International Wireless Communications and Mobile Computing (IWCMC).
Autor:
Donglie Liu, Yunfeng Shao, Zhenguo Liu, Björn Riedel, Andrew Sowter, Wolfgang Niemeier, Zhengfu Bian
Publikováno v:
Remote Sensing, Vol 6, Iss 2, Pp 1476-1495 (2014)
Interferometric Synthetic Aperture Radar (InSAR) and Differential Interferometric Synthetic Aperture Radar (DInSAR) have shown numerous applications for subsidence monitoring. In the past 10 years, the Persistent Scatterer InSAR (PSI) and Small BAsel
Externí odkaz:
https://doaj.org/article/9a431b7a54d54af1beea4b28710321bd
Autor:
Zexi Li, Jiaxun Lu, Shuang Luo, Didi Zhu, Yunfeng Shao, Yinchuan Li, Zhimeng Zhang, Yongheng Wang, Chao Wu
In federated learning (FL), clients may have diverse objectives, and merging all clients' knowledge into one global model will cause negative transfer to local performance. Thus, clustered FL is proposed to group similar clients into clusters and mai
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::751bd5a1d35f4dca319a3e8f7fa87673
Autor:
Xin-Chun Li, Yi-Chu Xu, Shaoming Song, Bingshuai Li, Yinchuan Li, Yunfeng Shao, De-Chuan Zhan
Federated Learning (FL) fuses collaborative models from local nodes without centralizing users' data. The permutation invariance property of neural networks and the non-i.i.d. data across clients make the locally updated parameters imprecisely aligne
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e3b53353d067200f5a575ba39688a188
Publikováno v:
Cyberspace Safety and Security ISBN: 9783031180668
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::53fbdd32cd046148e8e869f68ed97b4e
https://doi.org/10.1007/978-3-031-18067-5_20
https://doi.org/10.1007/978-3-031-18067-5_20