Zobrazeno 1 - 10
of 94
pro vyhledávání: '"Yui, Noriko"'
Publikováno v:
Adv. Math. 393 (2021) Article 108058
We establish the supercongruences for the fourteen rigid hypergeometric Calabi--Yau threefolds over $\mathbb Q$ conjectured by Rodriguez-Villegas in 2003. Our first method is based on Dwork's theory of $p$-adic unit roots and it allows us to establis
Externí odkaz:
http://arxiv.org/abs/1705.01663
Publikováno v:
In Advances in Mathematics 24 December 2021 393
Autor:
Rose, Simon, Yui, Noriko
We consider certain elliptic threefolds over the projective plane (more generally over certain rational surfaces) with a section in Weierstrass normal form. In particular, over a del Pezzo surface of degree 8, these elliptic threefolds are Calabi-Yau
Externí odkaz:
http://arxiv.org/abs/1312.0911
Autor:
Yui, Noriko
This paper presents the current status on modularity of Calabi-Yau varieties since the last update in 2003. We will focus on Calabi-Yau varieties of dimension at most three. Here modularity refers to at least two different types: arithmetic modularit
Externí odkaz:
http://arxiv.org/abs/1212.4308
We consider Calabi-Yau threefolds of Borcea-Voisin type over Q. They are constructed from products of K3 surfaces and elliptic curves. We use concrete K3 surfaces and discuss the automorphy of the Galois representations associated to the Calabi-Yau t
Externí odkaz:
http://arxiv.org/abs/1212.3399
We consider rigid Calabi--Yau threefolds defined over $\QQ$ and the question of whether they admit quadratic twists. We give a precise geometric definition of the notion of a quadratic twists in this setting. Every rigid Calabi--Yau threefold over $\
Externí odkaz:
http://arxiv.org/abs/1111.5275
We consider certain $K3$-fibered Calabi--Yau threefolds. One class of such Calabi--Yau threefolds are constructed by Hunt and Schimmrigk using twist maps. They are realized in weighted projective spaces as orbifolds of hypersurfaces. Our main goal of
Externí odkaz:
http://arxiv.org/abs/0911.0783
We consider complex K3 surfaces with a non-symplectic group acting trivially on the algebraic cycles. Vorontsov and Kondo classified those K3 surfaces with transcendental lattice of minimal rank. The purpose of this note is to study the Galois repres
Externí odkaz:
http://arxiv.org/abs/0904.1922
Autor:
Gouvea, Fernando Q., Yui, Noriko
The proof of Serre's conjecture on Galois representations over finite fields allows us to show, using a method due to Serre himself, that all rigid Calabi-Yau threefolds defined over Q are modular.
Comment: Final version to appear in Expositione
Comment: Final version to appear in Expositione
Externí odkaz:
http://arxiv.org/abs/0902.1466
Autor:
Kadir, Shabnam, Yui, Noriko
We consider certain families of Calabi-Yau orbifolds and their mirror partners constructed from Fermat hypersurfaces in weighted projective 4-spaces. Our focus is the topological mirror symmetry. There are at least three known ingredients to describe
Externí odkaz:
http://arxiv.org/abs/math/0606707