Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Yuedi Zeng"'
Autor:
Yuedi Zeng
Publikováno v:
AIMS Mathematics, Vol 8, Iss 6, Pp 14111-14131 (2023)
Let $ N $ be a left $ R $-module with the endomorphism ring $ S = \text{End}(_{R}N) $. Given two cardinal numbers $ \alpha $ and $ \beta $ and a matrix $ A\in S^{\beta\times\alpha} $, $ N $ is called flat relative to $ A $ in case, for each $ x\in l_
Externí odkaz:
https://doaj.org/article/878bd1da9b5c457586d46a5171aceadf
Autor:
Yuedi Zeng
Publikováno v:
Journal of Mathematics, Vol 2023 (2023)
Let R be a ring, X a class of left R-modules, S the class of submodules of X, and Q the class of quotient-modules of X. It is shown that SQ is precovering (preenveloping) if and only if every injective (projective) left R-module has an X-precover (X-
Externí odkaz:
https://doaj.org/article/e72f4e01994a49a7b99a430924c80cdb
Autor:
Zhen Wang, Yuedi Zeng
Publikováno v:
Annals of Functional Analysis. 13
Autor:
Yuedi Zeng
Publikováno v:
Communications in Algebra. 46:4941-4953
A ring R is called left slightly P-coherent if C is P-injective, for every left R-module exact sequence 0→A→B→C→0 with A and B P-injective. The properties of slightly P-coherent rings and several examples are studied to show that left slightl
Autor:
Yuedi Zeng, Jianlong Chen
Publikováno v:
Bulletin of the Korean Mathematical Society. 50:11-24
Let m and n be fixed positive integers and M a right R-module. Recall that M is said to be (m,n)-injective if Ext 1 (P,M) = 0for any (m,n)-presented right R-module P; M is said to be (m,n)-flatif Tor 1 (N,P) = 0 for any (m,n)-presented left R-modul
Autor:
Jianlong Chen, Yuedi Zeng
Publikováno v:
Communications in Algebra. 38:3851-3867
Let R be a ring, n a fixed non-negative integer and ℱ the class of all left R-modules of FP-injective dimensions at most n. It is proved that all left R-modules over a left coherent ring R have ℱ-preenvelopes and ℱ-covers. Left (right) ℱ-reso