Zobrazeno 1 - 10
of 152
pro vyhledávání: '"Yue Xiaoqiang"'
Publikováno v:
Zhongliu Fangzhi Yanjiu, Vol 45, Iss 10, Pp 768-774 (2018)
Objective To investigate the related genes and potential mechanism in the course of gastric intestinal metaplasia and confirm whether these differential genes continusously function in the development of gastric cancer. Methods The microarray data of
Externí odkaz:
https://doaj.org/article/f378a41aafad483f8f5ef7319ed8fb5f
In 2008, Maday and Ronquist introduced an interesting new approach for the direct parallel-in-time (PinT) solution of time-dependent PDEs. The idea is to diagonalize the time stepping matrix, keeping the matrices for the space discretization unchange
Externí odkaz:
http://arxiv.org/abs/2005.09158
The paper focuses on developing and studying efficient block preconditioners based on classical algebraic multigrid for the large-scale sparse linear systems arising from the fully coupled and implicitly cell-centered finite volume discretization of
Externí odkaz:
http://arxiv.org/abs/2002.04958
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Applied Mathematics Letters August 2023 142
The multigrid-reduction-in-time (MGRIT) technique has proven to be successful in achieving higher run-time speedup by exploiting parallelism in time. The goal of this article is to develop and analyze a MGRIT algorithm, using FCF-relaxation with time
Externí odkaz:
http://arxiv.org/abs/1906.06829
In this paper, an efficient and high-order accuracy finite difference method is proposed for solving multidimensional nonlinear Burgers' equation. The third-order three stage Runge-Kutta total variation diminishing (TVD) scheme is employed for the ti
Externí odkaz:
http://arxiv.org/abs/1805.08407
The paper investigates a non-intrusive parallel time integration with multigrid for space-fractional diffusion equations in two spatial dimensions. We firstly obtain a fully discrete scheme via using the linear finite element method to discretize spa
Externí odkaz:
http://arxiv.org/abs/1805.06688
In this study we construct a time-space finite element (FE) scheme and furnish cost-efficient approximations for one-dimensional multi-term time fractional advection diffusion equations on a bounded domain $\Omega$. Firstly, a fully discrete scheme i
Externí odkaz:
http://arxiv.org/abs/1708.02126
The paper aims to establish a fully discrete finite element (FE) scheme and provide cost-effective solutions for one-dimensional time-space Caputo-Riesz fractional diffusion equations on a bounded domain $\Omega$. Firstly, we construct a fully discre
Externí odkaz:
http://arxiv.org/abs/1707.08345