Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Yue, Jingtong"'
Autor:
Lin, Xin, Zhou, Yuyan, Yue, Jingtong, Ren, Chao, Chan, Kelvin C. K., Qi, Lu, Yang, Ming-Hsuan
Unsupervised restoration approaches based on generative adversarial networks (GANs) offer a promising solution without requiring paired datasets. Yet, these GAN-based approaches struggle to surpass the performance of conventional unsupervised GAN-bas
Externí odkaz:
http://arxiv.org/abs/2408.09241
Autor:
Ren, Bin, Li, Yawei, Mehta, Nancy, Timofte, Radu, Yu, Hongyuan, Wan, Cheng, Hong, Yuxin, Han, Bingnan, Wu, Zhuoyuan, Zou, Yajun, Liu, Yuqing, Li, Jizhe, He, Keji, Fan, Chao, Zhang, Heng, Zhang, Xiaolin, Yin, Xuanwu, Zuo, Kunlong, Liao, Bohao, Xia, Peizhe, Peng, Long, Du, Zhibo, Di, Xin, Li, Wangkai, Wang, Yang, Zhai, Wei, Pei, Renjing, Guo, Jiaming, Xu, Songcen, Cao, Yang, Zha, Zhengjun, Wang, Yan, Liu, Yi, Wang, Qing, Zhang, Gang, Zhang, Liou, Zhao, Shijie, Sun, Long, Pan, Jinshan, Dong, Jiangxin, Tang, Jinhui, Liu, Xin, Yan, Min, Wang, Qian, Zhou, Menghan, Yan, Yiqiang, Liu, Yixuan, Chan, Wensong, Tang, Dehua, Zhou, Dong, Wang, Li, Tian, Lu, Emad, Barsoum, Jia, Bohan, Qiao, Junbo, Zhou, Yunshuai, Zhang, Yun, Li, Wei, Lin, Shaohui, Zhou, Shenglong, Chen, Binbin, Liao, Jincheng, Zhao, Suiyi, Zhang, Zhao, Wang, Bo, Luo, Yan, Wei, Yanyan, Li, Feng, Wang, Mingshen, Guan, Jinhan, Hu, Dehua, Yu, Jiawei, Xu, Qisheng, Sun, Tao, Lan, Long, Xu, Kele, Lin, Xin, Yue, Jingtong, Yang, Lehan, Du, Shiyi, Qi, Lu, Ren, Chao, Han, Zeyu, Wang, Yuhan, Chen, Chaolin, Li, Haobo, Zheng, Mingjun, Yang, Zhongbao, Song, Lianhong, Yan, Xingzhuo, Fu, Minghan, Zhang, Jingyi, Li, Baiang, Zhu, Qi, Xu, Xiaogang, Guo, Dan, Guo, Chunle, Chen, Jiadi, Long, Huanhuan, Duanmu, Chunjiang, Lei, Xiaoyan, Liu, Jie, Jia, Weilin, Cao, Weifeng, Zhang, Wenlong, Mao, Yanyu, Guo, Ruilong, Zhang, Nihao, Pandey, Manoj, Chernozhukov, Maksym, Le, Giang, Cheng, Shuli, Wang, Hongyuan, Wei, Ziyan, Tang, Qingting, Wang, Liejun, Li, Yongming, Guo, Yanhui, Xu, Hao, Khatami-Rizi, Akram, Mahmoudi-Aznaveh, Ahmad, Hsu, Chih-Chung, Lee, Chia-Ming, Chou, Yi-Shiuan, Joshi, Amogh, Akalwadi, Nikhil, Malagi, Sampada, Yashaswini, Palani, Desai, Chaitra, Tabib, Ramesh Ashok, Patil, Ujwala, Mudenagudi, Uma
This paper provides a comprehensive review of the NTIRE 2024 challenge, focusing on efficient single-image super-resolution (ESR) solutions and their outcomes. The task of this challenge is to super-resolve an input image with a magnification factor
Externí odkaz:
http://arxiv.org/abs/2404.10343
Autor:
Lin, Xin, Yue, Jingtong, Chan, Kelvin C. K., Qi, Lu, Ren, Chao, Pan, Jinshan, Yang, Ming-Hsuan
Multi-task image restoration has gained significant interest due to its inherent versatility and efficiency compared to its single-task counterpart. However, performance decline is observed with an increase in the number of tasks, primarily attribute
Externí odkaz:
http://arxiv.org/abs/2312.01677
Rain in the dark poses a significant challenge to deploying real-world applications such as autonomous driving, surveillance systems, and night photography. Existing low-light enhancement or deraining methods struggle to brighten low-light conditions
Externí odkaz:
http://arxiv.org/abs/2305.03997
Rain in the dark is a common natural phenomenon. Photos captured in such a condition significantly impact the performance of various nighttime activities, such as autonomous driving, surveillance systems, and night photography. While existing methods
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::861d060bb852370bc0f3eb6c29637d07