Zobrazeno 1 - 10
of 261
pro vyhledávání: '"Yuasa, F"'
We focus on numerical techniques for expanding 3-loop Feynman integrals with respect to the dimensional regularization parameter $\varepsilon,$ which is related to the space-time dimension as $\nu = 4-2\varepsilon,$ and describes underlying UV singul
Externí odkaz:
http://arxiv.org/abs/2408.06551
Evaluation of a wide variety of Feynman diagrams with multi-loop integrals and physical parameters and its comparison with high energy experiments are expected to investigate new physics beyond the Standard Model. We have been developing a direct com
Externí odkaz:
http://arxiv.org/abs/1803.07224
The direct computation method(DCM) is developed to calculate the multi-loop amplitude for general masses and external momenta. The ultraviolet divergence is under control in dimensional regularization. In this paper we report on the progress of DCM t
Externí odkaz:
http://arxiv.org/abs/1803.05221
Publikováno v:
Comput. Phys. Comm. 224 (2018) 164
We give numerical integration results for Feynman loop diagrams such as those covered by Laporta [1] and by Baikov and Chetyrkin [2], and which may give rise to loop integrals with UV singularities. We explore automatic adaptive integration using mul
Externí odkaz:
http://arxiv.org/abs/1702.04904
Autor:
Kato, K., de Doncker, E., Hamaguchi, N., Ishikawa, T., Koike, T., Kurihara, Y., Shimizu, Y., Yuasa, F.
For the calculation of multi-loop Feynman integrals, a novel numerical method, the Direct Computation Method (DCM) is developed. It is a combination of a numerical integration and a series extrapolation. In principle, DCM can handle diagrams of arbit
Externí odkaz:
http://arxiv.org/abs/1201.6127
Autor:
Yuasa, F., de Doncker, E., Hamaguchi, N., Ishikawa, T., Kato, K., Kurihara, Y., Fujimoto, J., Shimizu, Y.
A new approach is presented to evaluate multi-loop integrals, which appear in the calculation of cross-sections in high-energy physics. It relies on a fully numerical method and is applicable to a wide class of integrals with various mass configurati
Externí odkaz:
http://arxiv.org/abs/1112.0637
Autor:
Yuasa, F., Ishikawa, T., Kurihara, Y., Fujimoto, J., Shimizu, Y., Hamaguchi, N., de Doncker, E., Kato, K.
In this paper, we describe a numerical approach to evaluate Feynman loop integrals. In this approach the key technique is a combination of a numerical integration method and a numerical extrapolation method. Since the computation is carried out in a
Externí odkaz:
http://arxiv.org/abs/1109.4213
Publikováno v:
PoS ACAT08:122,2008
A purely numerical method, Direct ComputationMethod is applied to evaluate Feynman integrals. This method is based on the combination of an efficient numerical integration and an efficient extrapolation. In addition, high-precision arithmetic and par
Externí odkaz:
http://arxiv.org/abs/0904.2823
Autor:
Yasui, Y., Ueda, T., de Doncker, E., Fujimoto, J., Hamaguchi, N., Ishikawa, T., Shimizu, Y., Yuasa, F.
Publikováno v:
ECONF C0705302:LOOP04,2007
We discuss a new approach for the numerical evaluation of loop integrals. The fully numerical calculations of an infrared one-loop vertex and a box diagram are demonstrated. To perform these calculations, we apply an extrapolation method based on the
Externí odkaz:
http://arxiv.org/abs/0710.2957
Publikováno v:
PoSACAT2007:087,2007
We present a new approach for obtaining very precise integration results for infrared vertex and box diagrams, where the integration is carried out directly without performing any analytic integration of Feynman parameters. Using an appropriate numer
Externí odkaz:
http://arxiv.org/abs/0709.0777