Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Yuanyang Yu"'
Autor:
YUXIA GUO, YUANYANG YU
Publikováno v:
SIAM Journal on Mathematical Analysis; 2024, Vol. 56 Issue 3, p3861-3885, 25p
Autor:
Yuanyang Yu, Keqing Zong, Yu Yuan, Reiner Klemd, Xin-Shui Wang, Jingliang Guo, Rong Xu, Zhaochu Hu, Yongsheng Liu
Publikováno v:
Journal of Earth Science. 33:1081-1094
Publikováno v:
Advanced Nonlinear Studies. 22:248-272
In the present article, we study multiplicity of semi-classical solutions of a Yukawa-coupled massive Dirac-Klein-Gordon system with the general nonlinear self-coupling, which is either subcritical or critical growth. The number of solutions obtained
Publikováno v:
The Journal of Geometric Analysis. 33
Autor:
Xiaojing Dong, Yuanyang Yu
Publikováno v:
Applied Mathematics Letters. :108731
Publikováno v:
Indian Journal of Pure and Applied Mathematics. 52:149-161
In this paper, we study the following planar Schrodinger-Newton system with a Coulomb potential $$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u+ W(x)u+ 2\pi \phi u+\int _{{\mathbb {R}}^{2}}\frac{[u(y)]^{2}}{|x-y|}dyu = f(u), &{} \text{in}\,{\ma
Autor:
Yuanyang Yu, Zhipeng Yang
Publikováno v:
Archiv der Mathematik. 115:703-716
In this paper, we study the following nonlinear elliptic systems: $$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u_1+V_1(x)u_1=\partial _{u_1}F(x,u)&{}\quad x\in {\mathbb {R}}^N,\\ -\Delta u_2+V_2(x)u_2=\partial _{u_2}F(x,u)&{}\quad x\in {\math
Autor:
Yuanyang Yu
Publikováno v:
Applied Mathematics Letters. 134:108306
Autor:
Yu Yuan, Keqing Zong, Yongsheng Liu, Zhaochu Hu, Wen Zhang, Ming Li, Jingliang Guo, Peter A. Cawood, Huai Cheng, Yuanyang Yu
Publikováno v:
Precambrian Research. 327:314-326
The southern Central Asian Orogenic Belt contains numerous microcontinents including the Kazakhstan-Yili block, Central Tianshan Arc and Junggar block in the west, the Erguna, Xing'an, Songliao and Jiamusi-Khanka blocks in the east, bridging by the T
Publikováno v:
Applicable Analysis. 100:695-713
In this paper, we consider the following fractional Schrodinger–Poisson system: (−Δ)su+u+K(x)φu=Q(x)f(u)inR3,(−Δ)tφ=K(x)u2inR3, where s∈(34,1), t∈(0,1) are two fixed constants, K, Q are continuous,...