Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Yuanyang Chang"'
Publikováno v:
Proceedings of the American Mathematical Society. 147:1453-1465
Let $K$ be a homogeneous self-similar set satisfying the strong separation condition. This paper is concerned with the quantitative recurrence properties of the natural map $T: K\rightarrow K$ induced by the shift. Let $\mu$ be the natural self-simil
Publikováno v:
Publicationes Mathematicae Debrecen. 92:317-330
Autor:
Kunkun Song, Yuanyang Chang
Publikováno v:
Journal of Number Theory. 180:743-755
Let k n ( x ) be the n -th partial quotient of the generalized continued fraction (GCF) expansion of x . This paper is concerned with the growth rate of k n ( x ) . When the parameter function satisfies − 1 ϵ ( k ) ≤ 1 , we obtain the Hausdorff
Autor:
Ji-Hua Ma, Yuanyang Chang
Publikováno v:
Monatshefte für Mathematik. 184:379-399
We study some distribution properties of the Oppenheim continued fraction expansions. A Gauss–Kuzmin–Levy type theorem is established. Based on this, a Frechet law concerning the partial maxima of the growth rate of the digit sequence is derived,
Publikováno v:
Fractals. 28:2050039
In this paper, we are concerned with the relationship among the lower Assouad-type dimensions. For uniformly perfect sets in doubling metric spaces, we obtain a variational result between two different but closely related lower Assouad spectra. As an
Publikováno v:
Proceedings of the American Mathematical Society; Apr2019, Vol. 147 Issue 4, p1453-1465, 13p