Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Yuanpin Zhou"'
Publikováno v:
Frontiers in Oncology, Vol 12 (2022)
PurposeDeveloping deep learning algorithms for breast cancer screening is limited due to the lack of labeled full-field digital mammograms (FFDMs). Since FFDM is a new technique that rose in recent decades and replaced digitized screen-film mammogram
Externí odkaz:
https://doaj.org/article/6747c9f2cbf04086ab64ec8e1d45b7b3
Autor:
Gongfa, Jiang, Zilong, He, Yuanpin, Zhou, Jun, Wei, Yuesheng, Xu, Hui, Zeng, Jiefang, Wu, Genggeng, Qin, Weiguo, Chen, Yao, Lu
Publikováno v:
Medical Physics. 50:837-853
Synthetic digital mammogram (SDM) is a 2D image generated from digital breast tomosynthesis (DBT) and used as a substitute for a full-field digital mammogram (FFDM) to reduce the radiation dose for breast cancer screening. The previous deep learning-
Autor:
Yuanpin Zhou, Yao Lu
Publikováno v:
ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Autor:
Yuanpin Zhou, Yao Lu
Publikováno v:
2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI).
Autor:
Gongfa Jiang, Zilong He, Yuanpin Zhou, Jun Wei, Yuesheng Xu, Hui Zeng, Jiefang Wu, Genggeng Qin, Weiguo Chen, Yao Lu
Publikováno v:
Medical Physics; Feb2023, Vol. 50 Issue 2, p837-853, 17p
Publikováno v:
Multimedia Tools and Applications. 79:17147-17167
Computer-aided detection (CADe) and diagnosis (CADx) system of mammographic microcalcification clusters (MCCs) is built for helping human observers to find suspicious areas of MCC and providing risk predictions of malignancy as a reference, since it
Autor:
Lubomir M. Hadjiiski, Yuanpin Zhou, Yao Lu, Mark A. Helvie, Jun Wei, Chuan Zhou, Heang Ping Chan
Publikováno v:
Medical Imaging 2020: Computer-Aided Diagnosis.
Deep-learning based application for digital mammography screening is limited due to lack of labeled data. Generating digital mammogram (DM) from existing labeled digitized screen-film mammogram (DFM) dataset is one approach that may alleviate the pro
Publikováno v:
Medical Imaging: Computer-Aided Diagnosis
Breast cancer is presently one of the most common cancer among women and has high morbidity and mortality worldwide. The emergence of microcalcifications (MCs) is an important early sign of breast cancer. In this study, a computer-aided detection and
In asymptomatic women, the early detection of breast cancer (BC) using digital mammography is considered one of the most effective tools to reduce the morbidity and mortality associated with BC. One of the important signs of BC at each early stage is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::34d0f0f2f802fb0e0c40a2974bd83905
https://doi.org/10.1016/b978-0-12-818148-5.00014-x
https://doi.org/10.1016/b978-0-12-818148-5.00014-x
Autor:
Yaman Akbulut, Thilaga Shri Chandra Amma Palanisamy, Amira S. Ashour, Varun Bajaj, Said Broumi, Umit Budak, Guanxiong Cai, Weiguo Chen, Azeddine Elhassouny, Yanhui Guo, Ahmed Refaat Hawas, Mohan Jayaraman, Murat Karabatak, Deepika Koundal, Chun-fang Liu, Yao Lu, Ion Patrascu, Abdulkadir Sengur, A.I. Shahin, Bhisham Sharma, Prem Kumar Singh, Florentin Smarandache, Erkan Tanyildizi, Krishnaveni Vellingiri, V. Venkateswara Rao, Hai-Long Yang, Hui Zeng, Yuanpin Zhou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::edb254a6c9869e36ab4905063448f9ba
https://doi.org/10.1016/b978-0-12-818148-5.09990-2
https://doi.org/10.1016/b978-0-12-818148-5.09990-2