Zobrazeno 1 - 10
of 135
pro vyhledávání: '"Yuan Zilong"'
Autor:
Yuan, Zilong, Tang, Zechen, Tao, Honggeng, Gong, Xiaoxun, Chen, Zezhou, Wang, Yuxiang, Li, He, Li, Yang, Xu, Zhiming, Sun, Minghui, Zhao, Boheng, Wang, Chong, Duan, Wenhui, Xu, Yong
Deep learning electronic structures from ab initio calculations holds great potential to revolutionize computational materials studies. While existing methods proved success in deep-learning density functional theory (DFT) Hamiltonian matrices, they
Externí odkaz:
http://arxiv.org/abs/2407.14379
Autor:
Tang, Zechen, Zou, Nianlong, Li, He, Wang, Yuxiang, Yuan, Zilong, Tao, Honggeng, Li, Yang, Chen, Zezhou, Zhao, Boheng, Sun, Minghui, Jiang, Hong, Duan, Wenhui, Xu, Yong
The combination of deep learning and ab initio materials calculations is emerging as a trending frontier of materials science research, with deep-learning density functional theory (DFT) electronic structure being particularly promising. In this work
Externí odkaz:
http://arxiv.org/abs/2406.17561
Autor:
Wang, Yuxiang, Li, Yang, Tang, Zechen, Li, He, Yuan, Zilong, Tao, Honggeng, Zou, Nianlong, Bao, Ting, Liang, Xinghao, Chen, Zezhou, Xu, Shanghua, Bian, Ce, Xu, Zhiming, Wang, Chong, Si, Chen, Duan, Wenhui, Xu, Yong
Realizing large materials models has emerged as a critical endeavor for materials research in the new era of artificial intelligence, but how to achieve this fantastic and challenging objective remains elusive. Here, we propose a feasible pathway to
Externí odkaz:
http://arxiv.org/abs/2406.10536
Autor:
Li, Yang, Tang, Zechen, Chen, Zezhou, Sun, Minghui, Zhao, Boheng, Li, He, Tao, Honggeng, Yuan, Zilong, Duan, Wenhui, Xu, Yong
Publikováno v:
Phys. Rev. Lett. 133, 076401 (2024)
Deep-learning density functional theory (DFT) shows great promise to significantly accelerate material discovery and potentially revolutionize materials research. However, current research in this field primarily relies on data-driven supervised lear
Externí odkaz:
http://arxiv.org/abs/2403.11287
Autor:
Yuan, Zilong, Xu, Zhiming, Li, He, Cheng, Xinle, Tao, Honggeng, Tang, Zechen, Zhou, Zhiyuan, Duan, Wenhui, Xu, Yong
Neural network force fields have significantly advanced ab initio atomistic simulations across diverse fields. However, their application in the realm of magnetic materials is still in its early stage due to challenges posed by the subtle magnetic en
Externí odkaz:
http://arxiv.org/abs/2402.04864
Autor:
Wang, Yuxiang, Li, He, Tang, Zechen, Tao, Honggeng, Wang, Yanzhen, Yuan, Zilong, Chen, Zezhou, Duan, Wenhui, Xu, Yong
Deep-learning electronic structure calculations show great potential for revolutionizing the landscape of computational materials research. However, current neural-network architectures are not deemed suitable for widespread general-purpose applicati
Externí odkaz:
http://arxiv.org/abs/2401.17015
Autor:
He, Yaoyao, Yang, Miao, Hou, Rong, Ai, Shuangquan, Nie, Tingting, Chen, Jun, Hu, Huaifei, Guo, Xiaofang, Liu, Yulin, Yuan, Zilong
Publikováno v:
In European Journal of Radiology Open June 2024 12
Autor:
Nie, Tingting, Chen, Zien, Cai, Jun, Ai, Shuangquan, Xue, Xudong, Yuan, Mengting, Li, Chao, Shi, Liting, Liu, Yulin, Verma, Vivek, Bi, Jianping, Han, Guang, Yuan, Zilong
Publikováno v:
In Radiotherapy and Oncology January 2024 190
Autor:
Bi, Jianping, Meng, Rui, Yang, Dongqin, Li, Ying, Cai, Jun, Zhang, Li, Qian, Jing, Xue, Xudong, Hu, Shiqi, Yuan, Zilong, Verma, Vivek, Bi, Nan, Han, Guang
Publikováno v:
In Radiotherapy and Oncology January 2024 190
Autor:
Zhou, Fengqin, Bi, Jianping, Wu, Shen, Ding, Yi, Chen, Jun, Yuan, Mengting, He, Yaoyao, Han, Guang, Yuan, Zilong
Publikováno v:
In Radiation Medicine and Protection December 2023 4(4):227-235