Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Yuan‐Pin Lee"'
Publikováno v:
Mathematical Proceedings of the Cambridge Philosophical Society. :1-28
We prove a formula expressing the K-theoretic log Gromov-Witten invariants of a product of log smooth varieties $V \times W$ in terms of the invariants of V and W. The proof requires introducing log virtual fundamental classes in K-theory and verifyi
Autor:
You‐Cheng Chou, Yuan‐Pin Lee
Publikováno v:
Journal of the London Mathematical Society. 106:2050-2074
Autor:
Honglu Fan, Yuan-Pin Lee
Publikováno v:
Contemporary Mathematics, 763
Singularities, Mirror Symmetry, and the Gauged Linear Sigma Model
Singularities, Mirror Symmetry, and the Gauged Linear Sigma Model
In this companion piece to 1712.03573, some variations on the main results there are sketched. In particular, the recursions in 1712.03573, which we interpreted as the quantum Lefschetz, is reformulated in terms of Givental's quantization formalism,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9560880eb44974fa56b6ab2004509ba9
https://hdl.handle.net/20.500.11850/494770
https://hdl.handle.net/20.500.11850/494770
Autor:
Honglu Fan, Yuan-Pin Lee
Publikováno v:
Michigan Math. J. 69, iss. 1 (2020), 153-178
Given two equivariant vector bundles over an algebraic GKM manifold with the same equivariant Chern classes, we show that the genus zero equivariant Gromov--Witten theory of their projective bundles are naturally isomorphic.
We study analytic continuations of quantum cohomology under simple flips $f: X \dashrightarrow X'$ along the extremal ray quantum variable $q^\ell$. The inverse correspondence $\Psi = [\Gamma_f]^*$ by the graph closure gives an embedding of Chow moti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f7c81d55069a4ece5517a434702b765d
Publikováno v:
Cambridge Journal of Mathematics. 4:333-401
Publikováno v:
Annales scientifiques de l'École normale supérieure. 49:1403-1443
We establish a new relationship (MLK correspondence) between twisted FJRW theory and local Gromov–Witten theory in all genera. As a consequence, we show that the Landau–Ginzburg/Calabi– Yau correspondence is implied by the crepant transformatio
Publikováno v:
J. Differential Geom. 110, no. 3 (2018), 495-541
For projective conifold transitions between Calabi–Yau threefolds $X$ and $Y$, with $X$ close to $Y$ in the moduli, we show that the combined information provided by the $A$ model (Gromov–Witten theory in all genera) and $B$ model (variation of H
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::83d5cd6dbf6ad72a847429d163cd569b
https://projecteuclid.org/euclid.jdg/1542423628
https://projecteuclid.org/euclid.jdg/1542423628
Autor:
Feng Qu, Yuan-Pin Lee
Publikováno v:
J. Math. Soc. Japan 70, no. 1 (2018), 229-242
The purpose of this short article is to prove a product formula relating the log Gromov–Witten invariants of $V \times W$ with those of $V$ and $W$ in the case the log structure on $V$ is trivial.
Autor:
Yuan-Pin Lee, Honglu Fan
Publikováno v:
Geom. Topol. 23, no. 1 (2019), 493-512
An effective algorithm of determining Gromov--Witten invariants of smooth hypersurfaces in any genus (subject to a degree bound) from Gromov--Witten invariants of the ambient space is proposed. The Appendix is joint with E. Schulte-Geers.
Commen
Commen
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b74a89b5e6c4df6271ccb99d6edbfd3f