Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Yuan, Xinkai"'
Semi-supervised learning (SSL) is an efficient framework that can train models with both labeled and unlabeled data, but may generate ambiguous and non-distinguishable representations when lacking adequate labeled samples. With human-in-the-loop, act
Externí odkaz:
http://arxiv.org/abs/2110.02521
Autor:
Zhang, Jianzhi, Ding, Yuan, Shi, Hui, Shao, Penghui, Yuan, Xinkai, Hu, Xingyu, Zhang, Qiming, Zhang, Hong, Luo, Delin, Wang, Chaoqiang, Yang, Liming, Luo, Xubiao
Publikováno v:
In Journal of Environmental Management 14 February 2024 352
Autor:
Chen, Meiling, Zhou, Lei, Xiong, Xiuqin, Zhu, Shijun, Yuan, Xinkai, Yan, Boyin, Ma, Bingrui, Shao, Jiachuang, Yang, Liming, Luo, Xubiao, Shao, Penghui
Publikováno v:
In Separation and Purification Technology 1 February 2024 330 Part C
Autor:
Zhang, Qiming, Peng, Yanhua, Peng, Yu, Zhang, Jianzhi, Yuan, Xinkai, Zhang, Jie, Cheng, Cheng, Ren, Wei, Duan, Xiaoguang, Xiao, Xiao, Luo, Xubiao
Publikováno v:
In Water Research 1 February 2024 249
Autor:
Chen, Meiling, Ding, Lin, Zhu, Shijun, Xiong, Xiuqin, Yuan, Xinkai, Peng, Yanhua, Yang, Liming, Shi, Hui, Shao, Penghui, Luo, Xubiao
Publikováno v:
In Journal of Environmental Chemical Engineering October 2023 11(5)
Autor:
Yuan, Xinkai, Xiong, Wei, Peng, Yanhua, Li, Bo, Zhang, Jianzhi, Chen, Meiling, Xiong, Xiuqin, Yang, Liming, Shi, Hui, Luo, Xubiao, Shao, Penghui
Publikováno v:
In Journal of Water Process Engineering July 2023 53
Autor:
Zhang, Jianzhi, Hu, Xingyu, He, Tingting, Yuan, Xinkai, Li, Xin, Shi, Hui, Yang, Liming, Shao, Penghui, Wang, Chaoqiang, Luo, Xubiao
Publikováno v:
In Waste Management 15 June 2023 165:19-26
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
2022 IEEE International Conference on Image Processing (ICIP).
Semi-supervised learning (SSL) is an efficient framework that can train models with both labeled and unlabeled data, but may generate ambiguous and non-distinguishable representations when lacking adequate labeled samples. With human-in-the-loop, act