Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Yu. Yu. Druzhinin"'
Autor:
Yu. Yu. Druzhinin
Publikováno v:
Mathematical Notes. 104:678-682
The discontinuity of any selection from a best n-net for n ≥ 2 in an arbitrary not strictly convex Banach space is proved. It is also proved that there is no Lipschitz selection on an arbitrary Banach space of dimension at least 2 whose unit sphere
Publikováno v:
Mathematical Notes. 102:465-474
We prove that the metric projection onto a finite-dimensional subspace Y ⊂ L p, p ∈ (1, 2) ∪ (2, ∞), satisfies the Lipschitz condition if and only if every function in Y is supported on finitely many atoms. We estimate the Lipschitz constant
Autor:
Yu. Yu. Druzhinin
Publikováno v:
Moscow University Mathematics Bulletin. 65:28-33
Let Y be a Chebyshev subspace of a Banach space X. Then the single-valued metric projection operator PY: X ∈ Y taking each x ∈ X to the nearest element y ∈ Y is well defined. Let M be an arbitrary set and µ be a σ-finite measure on some σ-al
Autor:
Druzhinin, Yu. Yu.1 druzhinin.yy@gmail.com
Publikováno v:
Mathematical Notes. Nov2018, Vol. 104 Issue 5/6, p678-682. 5p.
Autor:
Borodin, P.1 pborodin@inbox.ru, Druzhinin, Yu.1 druzhinin.yy@gmail.com, Chesnokova, K.1 kchesnokova@gmail.com
Publikováno v:
Mathematical Notes. Sep2017, Vol. 102 Issue 3/4, p465-474. 10p.
Autor:
Balashov, M. V.
Publikováno v:
Computational Mathematics & Mathematical Physics; Dec2017, Vol. 57 Issue 12, p1899-1907, 9p
Autor:
Alexey R. Alimov, Igor’ G. Tsar’kov
This monograph provides a comprehensive introduction to the classical geometric approximation theory, emphasizing important themes related to the theory including uniqueness, stability, and existence of elements of best approximation. It presents a n