Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Yu. S. Nayshtut"'
Autor:
V. A. Grachev, Yu. S. Nayshtut
Publikováno v:
Компьютерные исследования и моделирование, Vol 10, Iss 6, Pp 775-787 (2018)
The article covers several mathematical problems relating to elastic stability of thin shells in view of inconsistencies that have been recently identified between the experimental data and the predictions based on the shallow- shell theory. It is hi
Externí odkaz:
https://doaj.org/article/22d3ae01a3944c0c95b53fa30714c412
Autor:
Yu. S. Nayshtut
Publikováno v:
Компьютерные исследования и моделирование, Vol 9, Iss 3, Pp 503-515 (2017)
This paper studies minimum volume elastoplastic bodies. One part of the boundary of every reviewed body is fixed to the same space points while stresses are set for the remaining part of the boundary surface (loaded surface). The shape of the loaded
Externí odkaz:
https://doaj.org/article/ebb9ee7d54bd4603a094a4fa2947113b
Autor:
Yu. S. Nayshtut
Publikováno v:
Компьютерные исследования и моделирование, Vol 7, Iss 6, Pp 1143-1153 (2015)
This paper studies possibilities to use Neumann's method to solve boundary problems of elastic thin shells. Variational statement of statical problems for shells allows examining the problems within the space of distributions. Convergence of the Neum
Externí odkaz:
https://doaj.org/article/702d99c8de414b9690dd30ae8df410f8
Autor:
V. A. Grachev, Yu. S. Nayshtut
Publikováno v:
Компьютерные исследования и моделирование, Vol 6, Iss 5, Pp 655-670 (2014)
The paper demonstrates a fractal system of thin plates connected with hinges. The system can be studied using the methods of mechanics of solids with internal degrees of freedom. The structure is deployable - initially it is close to a small diameter
Externí odkaz:
https://doaj.org/article/a9f2cf00d92c4f7eb17a83d795c40086
Autor:
V. A. Grachev, Yu. S. Nayshtut
Publikováno v:
Компьютерные исследования и моделирование, Vol 5, Iss 3, Pp 423-432 (2013)
This paper studies solids with internal degrees of freedom using the method of Cartan moving hedron. Strain compatibility conditions are derived in the form of structure equations for manifolds. Constitutive relations are reviewed and ultimate load t
Externí odkaz:
https://doaj.org/article/c89e48e6268743b19833d1b561df6853
Autor:
V. A. Grachev, Yu. S. Nayshtut
Publikováno v:
Компьютерные исследования и моделирование, Vol 4, Iss 1, Pp 63-73 (2012)
This paper covers deployable systems assembled from a set of trapezium plates. The middles lines of the plates represent a plane curve in the original position of the package. It is proved that when the package of thin plates is unwrapped, a surface
Externí odkaz:
https://doaj.org/article/91bd0ff8288d43a1930c83188eeec129
Autor:
Yu. S. Nayshtut, V. A. Grachev
Publikováno v:
Компьютерные исследования и моделирование, Vol 3, Iss 1, Pp 3-29 (2011)
This paper covers deployable systems assembled from trapezium plates. When the plate package is unwrapped, a net shell with six loop cells is formed. It is proved that additional degrees of freedom appear in case of certain correlation between the si
Externí odkaz:
https://doaj.org/article/2858a9cfd2a64bc8b157c47f4c67747a
Autor:
V. A. Grachev, Yu. S. Nayshtut
Publikováno v:
Computer Research and Modeling. 14:63-77
Autor:
V. A. Grachev, Yu. S. Nayshtut
Publikováno v:
Computer Research and Modeling. 13:541-555
Autor:
V. A. Grachev, Yu. S. Nayshtut
Publikováno v:
Computer Research and Modeling. 12:807-820