Zobrazeno 1 - 10
of 22
pro vyhledávání: '"Yu. A. Mitropolsky"'
Autor:
Yu. A. Mitropolsky
Publikováno v:
Vietnam Journal of Mechanics. 29:221-243
The paper in question gives consideration to two examples of KBM method for constructing approximate solutions of Klein-Gordon-Bretherton equations often occurred in practice.
Publikováno v:
Journal of Engineering Mathematics. 38:173-190
A two-dimensional axisymmetric mathematical model of electron-beam autocrucible melting is developed and examined. Here, the hypothesis is used that forced convective heat transfer in the melt may be modelled with the help of the coefficient of effec
Autor:
Yu. A. Mitropolsky
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 30:5203-5210
Autor:
Mykola Prytula, Yu. O. Mitropolsky, Anatoliy K. Prykarpatsky, R. I. Andrushkiw, V. Hr. Samoilenko
Publikováno v:
Journal of Mathematical Physics. 35:1763-1777
The algebraic structure of the gradient‐holonomic algorithm for Lax integrable dynamical systems is discussed. A generalization of the R‐structure approach for the case of operator‐valued affine Lie algebras is used to prove the bi‐Hamiltonia
Publikováno v:
Asymptotic Methods in Resonance Analytical Dynamics
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::14b7918d73cf8c8c19965139940f965c
https://doi.org/10.4324/9780203409831_chapter_4
https://doi.org/10.4324/9780203409831_chapter_4
Publikováno v:
Asymptotic Methods in Resonance Analytical Dynamics
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::64feb9ab321b6dac32845e4bfedba393
https://doi.org/10.4324/9780203409831_chapter_2
https://doi.org/10.4324/9780203409831_chapter_2
Publikováno v:
Asymptotic Methods in Resonance Analytical Dynamics
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::00f25d094a8ae08edf7d2b7c6fec2ce6
https://doi.org/10.4324/9780203409831_chapter_3
https://doi.org/10.4324/9780203409831_chapter_3
Autor:
Yu. A. Mitropolsky
Publikováno v:
IUTAM Symposium on Recent Developments in Non-linear Oscillations of Mechanical Systems ISBN: 9789401058094
As is known, the investigation of nonlinear equations describing the problem on oscillations of bounded objects is an important problem: $$ div\left[ {k\left( {t,\vec r} \right)gradu} \right] - q\left( {t,\vec r} \right)u = \rho \left( {t,\vec r} \ri
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::59ce4acb86f39b12a8e8e14223f3cb57
https://doi.org/10.1007/978-94-011-4150-5_14
https://doi.org/10.1007/978-94-011-4150-5_14
Autor:
A. K. Lopatin, Yu. A. Mitropolsky
Publikováno v:
Nonlinear Mechanics, Groups and Symmetry ISBN: 9789048145171
Consider the following Pfaffian system $$\eqalign{ & d{x_1} = q_1^{(1)}(t,x,u)d{t_1} + ... + q_1^{(m)}(t,x,u)d{t_m}; \cr & \ldots \ldots \ldots \cr & d{x_k} = q_k^{(1)}(t,x,u)d{t_1} + .... + q_k^{(m)}(t,x,u)d{t_m}, \cr} $$ (7.1) where coefficients \(
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1c3830cc7e255b2673618dec2c2a01af
https://doi.org/10.1007/978-94-015-8535-4_8
https://doi.org/10.1007/978-94-015-8535-4_8