Zobrazeno 1 - 10
of 48
pro vyhledávání: '"Yu. A. Aminov"'
Autor:
V. I. Tarzhanov, D. V. Petrov, A. Yu. Garmashev, D. P. Kuchko, A. V. Vorob’ev, M. A. Ral’nikov, D. S. Boyarnikov, Yu. A. Aminov, Yu. R. Nikitenko
Publikováno v:
Combustion, Explosion, and Shock Waves. 58:389-395
Autor:
V. I. Tarzhanov, D. V. Petrov, A. Yu. Garmashev, D. P. Kuchko, A. V. Vorob'ev, M. A. Ral'nikov, D. S. Boyarnikov, Yu. A. Aminov, Yu. R. Nikitenko
Publikováno v:
Физика горения и взрыва. 58:148-154
Autor:
Yu. A. Aminov
Publikováno v:
Sbornik: Mathematics. 210:1663-1689
The action of the Monge-Ampère operator on polynomials of degree four in two variables is investigated. Two necessary conditions for the Monge-Ampère equation to have a solution are established. Sufficient conditions for solvability are indicated,
Autor:
Yu. A. Aminov
Publikováno v:
Ukrainian Mathematical Journal. 71:1-38
We present a survey of the results obtained for 2-dimensional surfaces in E3 and E4 and connected with the Gaussian curvature and Gaussian torsion. In this connection, we consider the Monge–Ampere equations, obtain the generalizations of Bernstein
Autor:
Yu. A. Aminov
Publikováno v:
Doklady Mathematics. 93:211-215
Hopf’s well-known conjecture is considered, which states that there exists no metric of strictly positive curvature on the topological product S2 × S2 of two 2-spheres. Three theorems are proved.
Autor:
Yu. A. Aminov
Publikováno v:
AIP Conference Proceedings.
At first we give a short review of works devoted to connections between geometry and topology and explain the reason for the appearance of Hopf’s conjecture. This conjecture attracts the attention of well-known geometers, but it has not a solution
Autor:
Yu. A. Aminov
Publikováno v:
Sbornik: Mathematics. 205:1529-1563
The question of the existence of polynomial solutions to the Monge-Ampere equation z{sub xx}z{sub yy}−z{sub xy}{sup 2}=f(x,y) is considered in the case when f(x,y) is a polynomial. It is proved that if f is a polynomial of the second degree, which
Autor:
Yu. A. Aminov, Ya. S. Nasedkina
Publikováno v:
Mathematical Notes. 94:167-176
Two theorems on conditions under which a two-dimensional surface in Euclidean 5-space is contained in a hypersphere and one theorem on conditions under which such a surface is contained in a hyperplane are proved. The notion of hyperbolic and ellipti
Autor:
Yu. A. Aminov
Publikováno v:
Doklady Mathematics. 89:176-178
Autor:
Yu. A. Aminov
Publikováno v:
Ukrainian Mathematical Journal. 59:1238-1252