Zobrazeno 1 - 10
of 187
pro vyhledávání: '"Yu. A. Mitropol’skii"'
Autor:
Yu. I. Mitropol’skii
Publikováno v:
Russian Microelectronics. 44:139-153
The development of architecture and electronic components of domestic and foreign supercomputers for over 50 years is reviewed from the first scalar computers CDC 6600, CDC 7600, IBM Stretch, and BESM-6 to modern systems with petascale performance. T
Autor:
Evgenii Frolovich Mishchenko, N. A. Perestyuk, N. A. Izobov, Yu. A. Mitropol’skii, Vladimir Aleksandrovich Il'in, A. A. Boichuk, I. V. Gaishun, N. Kh. Rozov
Publikováno v:
Differential Equations. 44:150-160
Publikováno v:
Ukrainian Mathematical Journal. 57:1177-1182
By the method of a priori estimates, we establish differential inequalities for energy norms in W2, r1 of solutions of problems with free boundary for a one-dimensional evolution equation in a medium with fractal geometry. On the basis of these inequ
Publikováno v:
Ukrainian Mathematical Journal. 57:1077-1088
We consider the periodic boundary-value problem u tt − u xx = g(x, t), u(0, t) = u(π, t) = 0, u(x, t + ω) = u(x, t). By representing a solution of this problem in the form u(x, t) = u0(x, t) + ũ(x, t), where u0(x, t) is a solution of the corresp
Publikováno v:
Ukrainian Mathematical Journal. 55:859-865
We prove a theorem on the application of the Bogolyubov–Mitropol'skii averaging principle to stochastic partial differential equations of the hyperbolic type.
Publikováno v:
Ukrainian Mathematical Journal. 53:1079-1092
We investigate group-theoretic properties of a nonlocal problem with free boundary for a degenerating quasilinear parabolic equation. We establish conditions for the invariant solvability of this problem, perform its reduction, and obtain an exact se
Autor:
Yu. A. Mitropol'skii
Publikováno v:
Ukrainian Mathematical Journal. 52:1505-1512
Publikováno v:
Ukrainian Mathematical Journal. 52:1068-1074
On the basis of the exact solution of the linear Dirichlet problem \(u_{tt} - u_{xx} = f\left( {x,t} \right)\), \(u\left( {0,t} \right) = u\left( {\pi ,t} \right) = 0,{\text{ }}u\left( {x,0} \right) = u\left( {x,2\pi } \right) = 0,\)\(0 \leqslant x \
Autor:
V. M. Millionshchikov, A. A. Martynyuk, Yu. A. Mitropol’skii, N. Kh. Rozov, I. T. Kiguradze, L D Kudryavtsev, Sergey K. Korovin, Vladimir Aleksandrovich Il'in, T. K. Shemyakina, I. V. Gaishun, V. N. Abrashin, A A Samarskii, Anatolii M. Samoilenko, V. A. Pliss, A. B. Kurzhanskii
Publikováno v:
Differential Equations. 36:1-11
Autor:
Yu. A. Mitropol'skii
Publikováno v:
Ukrainian Mathematical Journal. 51:1143-1165