Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Yu, Ximing"'
Publikováno v:
Chengshi guidao jiaotong yanjiu, Vol 27, Iss 7, Pp 285-289 (2024)
Objective Grouting treatment of karst caves is a challenge in metro tunnel engineering, as improper handling of karst caves during construction can easily lead to accidents. Therefore, it is necessary to study the relationship between the quantity of
Externí odkaz:
https://doaj.org/article/56da8803583944ec9f622b80c668c81f
Autor:
Yu, Ximing1,2, Dou, Shilu2, Lu, Liaodong2, Wang, Meng2, Li, Zhongfeng2, Wang, Dongwei1,2 y17370130514@163.com
Publikováno v:
Journal of Orthopaedic Surgery & Research. 4/20/2024, Vol. 19 Issue 1, p1-9. 9p.
Autor:
Cao, Zhenfeng, Yu, Ximing, Zheng, Yuzhen, Aghdam, Ehsan, Sun, Bo, Song, Mingming, Wang, Aijie, Han, Jinglong, Zhang, Jian
Publikováno v:
In Journal of Hazardous Materials 15 February 2022 424 Part B
Publikováno v:
In Science of the Total Environment 15 July 2021 778
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
2022 China Automation Congress (CAC).
Publikováno v:
2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI).
Recently, the Internet of Things (IoT) has been widely employed in industrial field for data collection and control application based on edge computing. The data security during storage and communication is one of the most concern in industrial syste
Publikováno v:
2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI).
Automatic meter reading (AMR) is faster and more efficient than manual meter reading by meter readers. Due to low cost and non-intrusiveness, image-based automatic meter reading attracts attention of researchers. However, existing image-based meter r
Publikováno v:
Remote Sensing, Vol 11, Iss 13, p 1622 (2019)
Remote Sensing
Volume 11
Issue 13
Pages: 1622
Remote Sensing
Volume 11
Issue 13
Pages: 1622
In real-time onboard hyperspectral-image(HSI) anomalous targets detection, processing speed and accuracy are equivalently desirable which is hard to satisfy at the same time. To improve detection accuracy, deep learning based HSI anomaly detectors (A
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.