Zobrazeno 1 - 10
of 171
pro vyhledávání: '"Yu, Guanglong"'
Autor:
Yu, Guanglong
For a $hypergraph$ $\mathcal{G}=(V, E)$ with a nonempty vertex set $V=V(\mathcal{G})$ and an edge set $E=E(\mathcal{G})$, its $adjacency$ $matrix$ $\mathcal {A}_{\mathcal{G}}=[(\mathcal {A}_{\mathcal{G}})_{ij}]$ is defined as $(\mathcal {A}_{\mathcal
Externí odkaz:
http://arxiv.org/abs/2307.09346
Autor:
Yu, Guanglong, Sun, Lin
For a $hypergraph$ $\mathcal{G}=(V, E)$ consisting of a nonempty vertex set $V=V(\mathcal{G})$ and an edge set $E=E(\mathcal{G})$, its $adjacency$ $matrix$ $\mathcal {A}_{\mathcal{G}}=[(\mathcal {A}_{\mathcal{G}})_{ij}]$ is defined as $(\mathcal {A}_
Externí odkaz:
http://arxiv.org/abs/2306.16027
Autor:
Yu, Guanglong, Sun, Lin
For a $hypergraph$ $\mathcal{G}=(V, E)$ consisting of a nonempty vertex set $V=V(\mathcal{G})$ and an edge set $E=E(\mathcal{G})$, its $adjacency$ $matrix$ $\mathcal {A}_{\mathcal{G}}=[(\mathcal {A}_{\mathcal{G}})_{ij}]$ is defined as $(\mathcal {A}_
Externí odkaz:
http://arxiv.org/abs/2306.10184
Let $A(G)$ and $D(G)$ be the adjacency matrix and the degree diagonal matrix of a graph $G$, respectively. Then $L(G)=D(G)-A(G)$ is called Laplacian matrix of the graph $G$. Let $G$ be a graph with $n$ vertices and $m$ edges. Then the $LI$-matrix of
Externí odkaz:
http://arxiv.org/abs/2012.11162
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Among all simple nonbipartite 2-connected graphs and among all nonbipartite $\theta$-graphs, the minimum least $Q$-eigenvalues are completely determined, respectively.
Externí odkaz:
http://arxiv.org/abs/1911.12541
Among all simple 2-connected graphs, and among all $\theta$-graphs, the graphs with the minimum algebraic connectivity are completely determined, respectively.
Comment: 5 pages
Comment: 5 pages
Externí odkaz:
http://arxiv.org/abs/1911.12542
We determine the unique hypergraphs with maximum spectral radius among all connected $k$-uniform ($k\geq 3$) unicyclic hypergraphs with matching number at least $z$, and among all connected $k$-uniform ($k\geq 3$) unicyclic hypergraphs with a given m
Externí odkaz:
http://arxiv.org/abs/1906.10614
In this paper, we proceed on determining the minimum $q_{min}$ among the connected nonbipartite graphs on $n\geq 5$ vertices and with domination number $\frac{n+1}{3}<\gamma\leq \frac{n-1}{2}$. Further results obtained are as follows: $\mathrm{(i)}$
Externí odkaz:
http://arxiv.org/abs/1812.08932
Autor:
Yu, Guanglong
Denote by $L_{g, l}$ the $lollipop$ $graph$ obtained by attaching a pendant path $\mathbb{P}=v_{g}v_{g+1}\cdots v_{g+l}$ ($l\geq 1$) to a cycle $\mathbb{C}=v_{1}v_{2}\cdots v_{g}v_{1}$ ($g\geq 3$). A $\mathcal {F}_{g, l}$-$graph$ of order $n\geq g+1$
Externí odkaz:
http://arxiv.org/abs/1707.07123