Zobrazeno 1 - 10
of 184
pro vyhledávání: '"Yu, Guanglong"'
Autor:
Yu, Guanglong
The extremal eigenvalues including maximum eigenvalues and the minimum eigenvalues about outerplanar graphs are investigated in this paper. Some structural characterizations about the (edge) maximal bipartite outerplanar graphs are represented. With
Externí odkaz:
http://arxiv.org/abs/2412.11893
Autor:
Yu, Guanglong
For a $hypergraph$ $\mathcal{G}=(V, E)$ with a nonempty vertex set $V=V(\mathcal{G})$ and an edge set $E=E(\mathcal{G})$, its $adjacency$ $matrix$ $\mathcal {A}_{\mathcal{G}}=[(\mathcal {A}_{\mathcal{G}})_{ij}]$ is defined as $(\mathcal {A}_{\mathcal
Externí odkaz:
http://arxiv.org/abs/2307.09346
Autor:
Yu, Guanglong, Sun, Lin
For a $hypergraph$ $\mathcal{G}=(V, E)$ consisting of a nonempty vertex set $V=V(\mathcal{G})$ and an edge set $E=E(\mathcal{G})$, its $adjacency$ $matrix$ $\mathcal {A}_{\mathcal{G}}=[(\mathcal {A}_{\mathcal{G}})_{ij}]$ is defined as $(\mathcal {A}_
Externí odkaz:
http://arxiv.org/abs/2306.16027
Autor:
Yu, Guanglong, Sun, Lin
For a $hypergraph$ $\mathcal{G}=(V, E)$ consisting of a nonempty vertex set $V=V(\mathcal{G})$ and an edge set $E=E(\mathcal{G})$, its $adjacency$ $matrix$ $\mathcal {A}_{\mathcal{G}}=[(\mathcal {A}_{\mathcal{G}})_{ij}]$ is defined as $(\mathcal {A}_
Externí odkaz:
http://arxiv.org/abs/2306.10184
Let $A(G)$ and $D(G)$ be the adjacency matrix and the degree diagonal matrix of a graph $G$, respectively. Then $L(G)=D(G)-A(G)$ is called Laplacian matrix of the graph $G$. Let $G$ be a graph with $n$ vertices and $m$ edges. Then the $LI$-matrix of
Externí odkaz:
http://arxiv.org/abs/2012.11162
Among all simple nonbipartite 2-connected graphs and among all nonbipartite $\theta$-graphs, the minimum least $Q$-eigenvalues are completely determined, respectively.
Externí odkaz:
http://arxiv.org/abs/1911.12541
Among all simple 2-connected graphs, and among all $\theta$-graphs, the graphs with the minimum algebraic connectivity are completely determined, respectively.
Comment: 5 pages
Comment: 5 pages
Externí odkaz:
http://arxiv.org/abs/1911.12542
We determine the unique hypergraphs with maximum spectral radius among all connected $k$-uniform ($k\geq 3$) unicyclic hypergraphs with matching number at least $z$, and among all connected $k$-uniform ($k\geq 3$) unicyclic hypergraphs with a given m
Externí odkaz:
http://arxiv.org/abs/1906.10614
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper, we proceed on determining the minimum $q_{min}$ among the connected nonbipartite graphs on $n\geq 5$ vertices and with domination number $\frac{n+1}{3}<\gamma\leq \frac{n-1}{2}$. Further results obtained are as follows: $\mathrm{(i)}$
Externí odkaz:
http://arxiv.org/abs/1812.08932