Zobrazeno 1 - 10
of 322
pro vyhledávání: '"Young Chel Kwun"'
Publikováno v:
Advances in Difference Equations, Vol 2021, Iss 1, Pp 1-25 (2021)
Abstract Some new integral inequalities for strongly ( α , h − m ) $(\alpha ,h-m)$ -convex functions via generalized Riemann–Liouville fractional integrals are established. The outcomes of this paper provide refinements of some fractional integr
Externí odkaz:
https://doaj.org/article/637a128ae81b40288fb1eb5c8493c32b
Publikováno v:
Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-16 (2020)
Abstract Integral operators have a very vital role in diverse fields of science and engineering. In this paper, we use φ-convex functions for unified integral operators to obtain their upper bounds and upper and lower bounds for symmetric φ-convex
Externí odkaz:
https://doaj.org/article/37016a03722f45a6a5a0f7d84b5acb0e
Publikováno v:
Advances in Difference Equations, Vol 2020, Iss 1, Pp 1-14 (2020)
Abstract The objective of this paper is to derive the bounds of fractional and conformable integral operators for (s,m) $(s,m)$-convex functions in a unified form. Further, the upper and lower bounds of these operators are obtained in the form of a H
Externí odkaz:
https://doaj.org/article/54365d5b80254046af9ea3896d007b52
Publikováno v:
Journal of Inequalities and Applications, Vol 2019, Iss 1, Pp 1-16 (2019)
Abstract In the present research, we develop some integral inequalities of Hermite–Hadamard type for differentiable η-convex functions. Moreover, our results include several new and known results as particular cases.
Externí odkaz:
https://doaj.org/article/354dde2fe4924000b4f3c63589dddddd
Publikováno v:
IEEE Access, Vol 7, Pp 35060-35071 (2019)
The aim of this paper is to modify the Jungck-S iterative scheme by adding the idea of s-convexity. We define and analyze the modified Jungck-S orbit (MJSO) with s-convex combination and derive the escape criterion for MJSO. Moreover, we establish th
Externí odkaz:
https://doaj.org/article/831315597589440bb5ab777c3168138e
Publikováno v:
IEEE Access, Vol 7, Pp 69986-69997 (2019)
The visual beauty, self-similarity, and complexity of Mandelbrot sets and Julia sets have made an attractive field of research. One can find many generalizations of these sets in the literature. One such generalization is the use of results from fixe
Externí odkaz:
https://doaj.org/article/7d0e6fb2645248e3935d3c239054c97a
Publikováno v:
IEEE Access, Vol 7, Pp 12167-12176 (2019)
In today’s world, fractals play an important role in many fields, e.g., image compression or encryption, biology, physics, and so on. One of the earliest studied fractal types was the Mandelbrot and Julia sets. These fractals have been generalized
Externí odkaz:
https://doaj.org/article/a1f70461afaf42bfb81e6c5259a46fd4
Publikováno v:
IEEE Access, Vol 7, Pp 126283-126292 (2019)
Integral operators are useful in real analysis, mathematical analysis, functional analysis and other subjects of mathematical approach. The goal of this paper is to study a unified integral operator via convexity. By using convexity and conditions of
Externí odkaz:
https://doaj.org/article/0e1991ee531648dc9b90564630dd1348
Autor:
Young Chel Kwun, Abdul Aziz Shahid, Waqas Nazeer, Saad Ihsan Butt, Mujahid Abbas, Shin Min Kang
Publikováno v:
IEEE Access, Vol 7, Pp 95297-95304 (2019)
In today’s world, complex patterns of the dynamical framework have astounding highlights of fractals and become a huge field of research because of their beauty and unpredictability of their structure. The purpose of this paper is to visualize anti
Externí odkaz:
https://doaj.org/article/2505109923664067bc2b45800a98f6ed
Publikováno v:
IEEE Access, Vol 7, Pp 160472-160481 (2019)
In this paper, we extend Jungck–SP iteration with $s$ –convexity in second sense and define its orbit. We prove the fixed point results for fractal generation via extended iteration and utilize these results to develop algorithms for fractal visu
Externí odkaz:
https://doaj.org/article/f64283fc7f21471fb33e9bd23031a917