Zobrazeno 1 - 10
of 224
pro vyhledávání: '"Young, Alexandra L."'
Autor:
Aslani, Shahab, Lilaonitkul, Watjana, Gnanananthan, Vaishnavi, Raj, Divya, Rangelov, Bojidar, Young, Alexandra L, Hu, Yipeng, Taylor, Paul, Alexander, Daniel C, Jacob, Joseph
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions. This variation is seen in the CXR projections used, image annotations
Externí odkaz:
http://arxiv.org/abs/2208.10320
Autor:
Marinescu, Razvan V., Oxtoby, Neil P., Young, Alexandra L., Bron, Esther E., Toga, Arthur W., Weiner, Michael W., Barkhof, Frederik, Fox, Nick C., Eshaghi, Arman, Toni, Tina, Salaterski, Marcin, Lunina, Veronika, Ansart, Manon, Durrleman, Stanley, Lu, Pascal, Iddi, Samuel, Li, Dan, Thompson, Wesley K., Donohue, Michael C., Nahon, Aviv, Levy, Yarden, Halbersberg, Dan, Cohen, Mariya, Liao, Huiling, Li, Tengfei, Yu, Kaixian, Zhu, Hongtu, Tamez-Pena, Jose G., Ismail, Aya, Wood, Timothy, Bravo, Hector Corrada, Nguyen, Minh, Sun, Nanbo, Feng, Jiashi, Yeo, B. T. Thomas, Chen, Gang, Qi, Ke, Chen, Shiyang, Qiu, Deqiang, Buciuman, Ionut, Kelner, Alex, Pop, Raluca, Rimocea, Denisa, Ghazi, Mostafa M., Nielsen, Mads, Ourselin, Sebastien, Sorensen, Lauge, Venkatraghavan, Vikram, Liu, Keli, Rabe, Christina, Manser, Paul, Hill, Steven M., Howlett, James, Huang, Zhiyue, Kiddle, Steven, Mukherjee, Sach, Rouanet, Anais, Taschler, Bernd, Tom, Brian D. M., White, Simon R., Faux, Noel, Sedai, Suman, Oriol, Javier de Velasco, Clemente, Edgar E. V., Estrada, Karol, Aksman, Leon, Altmann, Andre, Stonnington, Cynthia M., Wang, Yalin, Wu, Jianfeng, Devadas, Vivek, Fourrier, Clementine, Raket, Lars Lau, Sotiras, Aristeidis, Erus, Guray, Doshi, Jimit, Davatzikos, Christos, Vogel, Jacob, Doyle, Andrew, Tam, Angela, Diaz-Papkovich, Alex, Jammeh, Emmanuel, Koval, Igor, Moore, Paul, Lyons, Terry J., Gallacher, John, Tohka, Jussi, Ciszek, Robert, Jedynak, Bruno, Pandya, Kruti, Bilgel, Murat, Engels, William, Cole, Joseph, Golland, Polina, Klein, Stefan, Alexander, Daniel C.
Publikováno v:
Machine Learning for Biomedical Imaging (MELBA), Dec 2021
We present the findings of "The Alzheimer's Disease Prediction Of Longitudinal Evolution" (TADPOLE) Challenge, which compared the performance of 92 algorithms from 33 international teams at predicting the future trajectory of 219 individuals at risk
Externí odkaz:
http://arxiv.org/abs/2002.03419
Autor:
Marinescu, Razvan V., Oxtoby, Neil P., Young, Alexandra L., Bron, Esther E., Toga, Arthur W., Weiner, Michael W., Barkhof, Frederik, Fox, Nick C., Golland, Polina, Klein, Stefan, Alexander, Daniel C.
Publikováno v:
MICCAI Multimodal Brain Image Analysis Workshop, 2019
The TADPOLE Challenge compares the performance of algorithms at predicting the future evolution of individuals at risk of Alzheimer's disease. TADPOLE Challenge participants train their models and algorithms on historical data from the Alzheimer's Di
Externí odkaz:
http://arxiv.org/abs/2001.09016
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Marinescu, Razvan V., Eshaghi, Arman, Lorenzi, Marco, Young, Alexandra L., Oxtoby, Neil P., Garbarino, Sara, Crutch, Sebastian J., Alexander, Daniel C.
Publikováno v:
NeuroImage, Volume 192, 15 May 2019, Pages 166-177
Here we present DIVE: Data-driven Inference of Vertexwise Evolution. DIVE is an image-based disease progression model with single-vertex resolution, designed to reconstruct long-term patterns of brain pathology from short-term longitudinal data sets.
Externí odkaz:
http://arxiv.org/abs/1901.03553
Autor:
Marinescu, Razvan V., Lorenzi, Marco, Blumberg, Stefano B., Young, Alexandra L., Morell, Pere P., Oxtoby, Neil P., Eshaghi, Arman, Yong, Keir X., Crutch, Sebastian J., Golland, Polina, Alexander, Daniel C.
Publikováno v:
Medical Image Computing and Computer Assisted Intervention 2019
We introduce Disease Knowledge Transfer (DKT), a novel technique for transferring biomarker information between related neurodegenerative diseases. DKT infers robust multimodal biomarker trajectories in rare neurodegenerative diseases even when only
Externí odkaz:
http://arxiv.org/abs/1901.03517
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Marinescu, Razvan V., Oxtoby, Neil P., Young, Alexandra L., Bron, Esther E., Toga, Arthur W., Weiner, Michael W., Barkhof, Frederik, Fox, Nick C., Klein, Stefan, Alexander, Daniel C., Consortium, the EuroPOND
The Alzheimer's Disease Prediction Of Longitudinal Evolution (TADPOLE) Challenge compares the performance of algorithms at predicting future evolution of individuals at risk of Alzheimer's disease. TADPOLE Challenge participants train their models an
Externí odkaz:
http://arxiv.org/abs/1805.03909
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.