Zobrazeno 1 - 10
of 13
pro vyhledávání: '"Youfang Leng"'
Autor:
Youfang Leng, Li Yu
Publikováno v:
IEEE Access, Vol 9, Pp 51618-51630 (2021)
Recently, session-based recommendations are becoming popular to explore the temporal characteristics of customers’ interactive behaviors. The user’s behavior in the session not only contains the item sequence but also rich context information suc
Externí odkaz:
https://doaj.org/article/29cb7516c171404897fba39701678320
Publikováno v:
Information Sciences. 622:115-132
Publikováno v:
Information Sciences. 614:223-239
Publikováno v:
ACM Transactions on Knowledge Discovery from Data; Jan2024, Vol. 18 Issue 1, p1-28, 28p
Publikováno v:
ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Publikováno v:
ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Publikováno v:
Decision Support Systems. 165:113894
Publikováno v:
ICASSP
Cross-domain recommendation (CDR) technology is proved to be an effective way to tackle the difficulties encountered by traditional recommender technology (e.g. CF), such as data sparsity and cold-start. However, on account of the heterogeneity, it i
Autor:
Youfang Leng, Li Yu
Publikováno v:
Pattern Recognition. 127:108601
Publikováno v:
Database Systems for Advanced Applications ISBN: 9783030594183
DASFAA (3)
DASFAA (3)
Next-basket recommendation plays an important role in both online and offline market. Existing methods often suffer from three challenges: information loss in basket encoding, sequential pattern mining of the shopping history, and the diversity of re
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5cade4e5fe353ecfe3a2f01a7c701187
https://doi.org/10.1007/978-3-030-59419-0_39
https://doi.org/10.1007/978-3-030-59419-0_39