Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Yoshihisa Miyanishi"'
Publikováno v:
SIAM Journal on Mathematical Analysis. 54:6164-6185
Publikováno v:
Journal d'Analyse Mathématique. 146:791-800
Publikováno v:
Journal de Mathématiques Pures et Appliquées. 140:211-229
In this paper, we consider the Neumann–Poincare type operator associated with the Lame system of linear elasticity. It is known that if the boundary of a planar domain is smooth enough, it has eigenvalues converging to two different points determin
Autor:
Grigori Rozenblum, Yoshihisa Miyanishi
Publikováno v:
St. Petersburg Mathematical Journal. 31:371-386
Asymptotic properties of the eigenvalues of the Neumann-Poincare (NP) operator in three dimensions are treated. The region Omega subset of R-3 is bounded by a compact surface Gamma = partial derivative Omega, with certain smoothness conditions impose
Autor:
Grigori Rozenblum, Yoshihisa Miyanishi
Publikováno v:
International Mathematics Research Notices. 2021:8715-8740
We consider the adjoint double layer potential (Neumann–Poincaré (NP)) operator appearing in 3-dimensional elasticity. We show that the recent result about the polynomial compactness of this operator for the case of a homogeneous media follows wit
Publikováno v:
Annales de l'Institut Henri Poincaré C, Analyse non linéaire. 36:1817-1828
We address the question whether there is a three-dimensional bounded domain such that the Neumann--Poincar\'e operator defined on its boundary has infinitely many negative eigenvalues. It is proved in this paper that tori have such a property. It is
Autor:
Yoshihisa Miyanishi
Publikováno v:
Advances in Mathematics. 406:108547
Publikováno v:
Proceedings of the American Mathematical Society. 147:1073-1080
Publikováno v:
International Mathematics Research Notices. 2019:3883-3900
The Neumann--Poincar\'e operator defined on a smooth surface has a sequence of eigenvalues converging to zero, and the single layer potentials of the corresponding eigenfunctions, called plasmons, decay to zero, i.e., are localized on the surface, as
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::99174e58e756a1082414a7b36622e268