Zobrazeno 1 - 10
of 28
pro vyhledávání: '"Yoshihisa Ijiri"'
Publikováno v:
IEEE Robotics and Automation Letters. 7:573-580
Autor:
Chisato Nakashima, Kazutoshi Tanaka, Yoshihisa Ijiri, Masashi Hamaya, Yoshiya Shibata, Felix von Drigalski
Publikováno v:
IEEE Robotics and Automation Letters. 6:3878-3885
In this letter, we developed a novel learning framework from physical human-robot interactions. Owing to human domain knowledge, such interactions can be useful for facilitation of learning. However, applying numerous interactions for training data m
Learning-based Manipulation with Explicit and Implicit Dynamics Parameters for Multiple Environments
Publikováno v:
Journal of the Robotics Society of Japan. 39:177-180
Publikováno v:
Journal of the Robotics Society of Japan. 39:609-612
Autor:
Kazutoshi Tanaka, Masashi Hamaya, Devwrat Joshi, Felix von Drigalski, Ryo Yonetani, Takamitsu Matsubara, Yoshihisa Ijiri
Publikováno v:
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Publikováno v:
CASE
Disturbance Observer (DOB) has been widely used for robotic applications to eliminate various kinds of disturbances. Recently, learning-based DOB has attracted significant attention as it can deal with complex robotic systems. In this study, we propo
Autor:
Yoshihisa Ijiri, Tatsuya Koga
Publikováno v:
Journal of the Robotics Society of Japan. 37:707-710
Autor:
Felix von Drigalski, Yoshihisa Ijiri
Publikováno v:
Journal of the Robotics Society of Japan. 37:675-678
Autor:
Ryo Yonetani, Yoshihisa Ijiri, Kazutoshi Tanaka, Yifei Huang, Masashi Hamaya, Hayashi Kennosuke, Felix von Drigalski
Publikováno v:
ICRA
In industrial assembly tasks, the in-hand pose of grasped objects needs to be known with high precision for subsequent manipulation tasks such as insertion. This problem (in-hand-pose estimation) has traditionally been addressed using visual recognit
Autor:
Felix von Drigalski, Yoshiya Shibata, Masashi Hamaya, Robert Lee, Kazutoshi Tanaka, Chisato Nakashima, Takamitsu Matsubara, Yoshihisa Ijiri
Publikováno v:
IROS
Physically soft robots are promising for robotic assembly tasks as they allow stable contacts with the environment. In this study, we propose a novel learning system for soft robotic assembly strategies. We formulate this problem as a reinforcement l