Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Yoshida, Yuuya"'
Autor:
Yoshida, Yuuya
Solov'ev (1966), Nielsen (1973), and Blom (1982) independently showed a formula for the expected waiting time until a given finite pattern first occurs in random data. In this paper, we give a simple and combinatorial proof of the formula.
Comme
Comme
Externí odkaz:
http://arxiv.org/abs/2410.13426
Autor:
Yoshida, Yuuya
Publikováno v:
Journal of Number Theory, Vol. 265, 138--180 (2024)
For all $\alpha_1,\alpha_2\in(1,2)$ with $1/\alpha_1+1/\alpha_2>5/3$, we show that the number of pairs $(n_1,n_2)$ of positive integers with $N=\lfloor{n_1^{\alpha_1}}\rfloor+\lfloor{n_2^{\alpha_2}}\rfloor$ is equal to $\Gamma(1+1/\alpha_1)\Gamma(1+1
Externí odkaz:
http://arxiv.org/abs/2403.16691
After the work of Bordell\`{e}s, Dai, Heyman, Pan and Shparlinki (2018) and Heyman (2019), several authors studied the averages of arithmetic functions over the sequence $[x/n]$ and the integers of the form $[x/n]$. In this paper, we give three remar
Externí odkaz:
http://arxiv.org/abs/2312.15642
Autor:
Yoshida, Yuuya
For $\alpha>1$, set $\beta=1/(\alpha-1)$. We show that, for every $1<\alpha<(\sqrt{21}+4)/5\approx1.717$, the number of pairs $(m,n)$ of positive integers with $d=\lfloor{n^\alpha}\rfloor - \lfloor{m^\alpha}\rfloor$ is equal to $\beta\alpha^{-\beta}\
Externí odkaz:
http://arxiv.org/abs/2103.14239
Autor:
Yoshida, Yuuya
Let $\varepsilon>0$. An $n$-tuple $(p_i)_{i=1}^n$ of probability vectors is called $\varepsilon$-differentially private ($\varepsilon$-DP) if $e^\varepsilon p_j-p_i$ has no negative entries for all $i,j=1,\ldots,n$. An $n$-tuple $(\rho_i)_{i=1}^n$ of
Externí odkaz:
http://arxiv.org/abs/2011.09960
Autor:
Yoshida, Yuuya
Publikováno v:
Linear Algebra and its Applications, Vol. 620, 228--241 (2021)
Let $n\ge2$ and $d_1,\ldots,d_n\ge2$ be integers, and $\mathcal{F}$ be a field. A vector $u\in\mathcal{F}^{d_1}\otimes\cdots\otimes\mathcal{F}^{d_n}$ is called a product vector if $u=u^{[1]}\otimes\cdots\otimes u^{[n]}$ for some $u^{[1]}\in\mathcal{F
Externí odkaz:
http://arxiv.org/abs/2010.16293
Autor:
Saito, Kota, Yoshida, Yuuya
Publikováno v:
Journal of Number Theory, Vol. 222, 115--156 (2021)
By using the work of Frantzikinakis and Wierdl, we can see that for all $d\in\mathbb{N}$, $\alpha\in(d,d+1)$, and integers $k\ge d+2$ and $r\ge1$, there exist infinitely many $n\in\mathbb{N}$ such that the sequence $(\lfloor{(n+rj)^\alpha}\rfloor)_{j
Externí odkaz:
http://arxiv.org/abs/2006.13930
Publikováno v:
Phys. Rev. Lett. 125, 150402 (2020)
As a modern approach for the foundation of quantum theory, existing studies of General Probabilistic Theories gave various models of states and measurements that are quite different from quantum theory. In this paper, to seek a more realistic situati
Externí odkaz:
http://arxiv.org/abs/2004.04949
Publikováno v:
Journal of Physics A: Mathematical and Theoretical, Vol. 52, 465304 (2019)
We address perfect discrimination of two separable states. When available states are restricted to separable states, we can theoretically consider a larger class of measurements than the class of measurements allowed in quantum theory. The framework
Externí odkaz:
http://arxiv.org/abs/1903.01658
Autor:
Saito, Kota, Yoshida, Yuuya
Publikováno v:
Journal of Integer Sequences, Vol. 22 (2019), Article 19.2.1
A strictly increasing sequence of positive integers is called a slightly curved sequence with small error if the sequence can be well-approximated by a function whose second derivative goes to zero faster than or equal to $1/x^\alpha$ for some $\alph
Externí odkaz:
http://arxiv.org/abs/1807.06971