Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Yoshiaki, TERAMOTO"'
Autor:
Takaaki Nishida, Yoshiaki Teramoto
Publikováno v:
ANNALI DELL'UNIVERSITA' DI FERRARA. 69:245-262
Publikováno v:
Mathematische Annalen. 368:877-884
Based on the explicit representation of the Hadamard variational formula [1] for eigenvalues of the Stokes equations, we investigate the geometry of the domain in $$\mathbb R^3$$ . It turns out that if the first variation of some eigenvalue of the St
Autor:
Yoshiaki Teramoto, Kyoko Tomoeda
Publikováno v:
ANNALI DELL'UNIVERSITA' DI FERRARA. 60:289-306
We consider the linearized problem describing motion of a viscous incompressible fluid flow down an inclined plane under the effect of gravity. We formulate the problem for downward periodic disturbances from the laminar steady flow as an evolution e
Publikováno v:
Journal of Mathematical Fluid Mechanics. 15:689-700
Publikováno v:
Mathematical Fluid Dynamics, Present and Future ISBN: 9784431564553
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::da1d023221521492f3a8b4070a36b6b9
https://doi.org/10.1007/978-4-431-56457-7_17
https://doi.org/10.1007/978-4-431-56457-7_17
Autor:
Takaaki Nishida, Yoshiaki Teramoto
Publikováno v:
Chinese Annals of Mathematics, Series B. 30:769-784
After Benard’s experiment in 1900, Rayleigh formulated heat convection problems by the Oberbeck-Boussinesq approximation in the horizontal strip domain in 1916. The pattern formations have been investigated by the bifurcation theory, weakly nonline
Autor:
Yoshiaki Teramoto, Takaaki Nishida
Publikováno v:
Journal of Mathematical Fluid Mechanics. 11:383-406
We provide two bifurcation theorems, one of which guarantees the existence of nontrivial stationary solutions bifurcating from the basic heat conductive state in Benard–Marangoni convection, another for bifurcating time periodic solution, under cer
Publikováno v:
Journal of Mathematical Fluid Mechanics. 7:29-71
We provide the Hopf bifurcation theorem, which guarantees the existence of time periodic solution bifurcating from the stationary flow down an inclined plane under certain assumptions on the eigenvalues of the problem obtained by linearization around
Autor:
Yoshiaki Teramoto, Kyoko Tomoeda
Publikováno v:
Proc. Japan Acad. Ser. A Math. Sci. 88, no. 10 (2012), 168-172
We obtain the best constant in Korn’s inequality for solenoidal vector fields on a periodic slab which vanish on a part of its boundary. To do this we consider the Stokes equations with Dirichlet boundary conditions, following H. Ito [6],[7].
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dd98410ff5beb4ac0820fa9488c641c1
http://projecteuclid.org/euclid.pja/1354802415
http://projecteuclid.org/euclid.pja/1354802415