Zobrazeno 1 - 10
of 74
pro vyhledávání: '"Yoon, Dong Sung"'
Let $N$ be a positive integer and $\Gamma$ be a subgroup of $\mathrm{SL}_2(\mathbb{Z})$ containing $\Gamma_1(N)$. Let $K$ be an imaginary quadratic field and $\mathcal{O}$ be an order of discriminant $D_\mathcal{O}$ in $K$. Under some assumptions, we
Externí odkaz:
http://arxiv.org/abs/2311.07837
Let $K$ be an imaginary quadratic field and $\mathcal{O}$ be an order in $K$. We construct class fields associated with form class groups which are isomorphic to certain $\mathcal{O}$-ideal class groups in terms of the theory of canonical models due
Externí odkaz:
http://arxiv.org/abs/2308.11250
Let $K$ be an imaginary quadratic field. For an order $\mathcal{O}$ in $K$ and a positive integer $N$, let $K_{\mathcal{O},\,N}$ be the ray class field of $\mathcal{O}$ modulo $N\mathcal{O}$. We deal with various subjects related to $K_{\mathcal{O},\
Externí odkaz:
http://arxiv.org/abs/2205.10754
Autor:
Shin, Dong Hwa, Yoon, Dong Sung
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 February 2024 530(2)
Let $K$ be an imaginary quadratic field of discriminant $d_K$ with ring of integers $\mathcal{O}_K$. When $K$ is different from $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(\sqrt{-3})$, we consider a certain specific model for the elliptic curve $E_K$ wit
Externí odkaz:
http://arxiv.org/abs/2009.13837
Let $F$ be a totally real number field of class number one, and let $K$ be a CM-field with $F$ as its maximal real subfield. For each positive integer $N$, we construct a class group of certain binary quadratic forms over $F$ which is isomorphic to t
Externí odkaz:
http://arxiv.org/abs/1912.08128
Autor:
Koo, Ja Kyung, Yoon, Dong Sung
Publikováno v:
Proceedings of the Edinburgh Mathematical Society 62 (2019) 837-845
Schertz conjectured that every finite abelian extension of imaginary quadratic fields can be generated by the norm of the Siegel-Ramachandra invariants. We shall present a conditional proof of his conjecture by means of the characters on class groups
Externí odkaz:
http://arxiv.org/abs/1610.01311
Publikováno v:
Bull. Aust. Math. Soc. 95 (2017), no. 3, 384-392
We provide a concrete example of a normal basis for a finite Galois extension which is not abelian. More precisely, let $\mathbb{C}(X(N))$ be the field of meromorphic functions on the modular curve $X(N)$ of level $N$. We construct a completely free
Externí odkaz:
http://arxiv.org/abs/1608.06708
Let $K$ be an imaginary quadratic field, and let $\mathfrak{f}$ be a nontrivial integral ideal of $K$. Hasse and Ramachandra asked whether the ray class field of $K$ modulo $\mathfrak{f}$ can be generated by a single value of the Weber function. We c
Externí odkaz:
http://arxiv.org/abs/1608.06705
For positive integers $g$ and $N$, let $\mathcal{F}_N$ be the field of meromorphic Siegel modular functions of genus $g$ and level $N$ whose Fourier coefficients belong to the $N$th cyclotomic field. We present explicit generators of $\mathcal{F}_N$
Externí odkaz:
http://arxiv.org/abs/1604.01514