Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Yongxiong Li"'
Publikováno v:
Asian Journal of Mathematics. 23:383-400
Let $K = \mathbb{Q}(\sqrt{-q})$, where $q$ is any prime number congruent to $7$ modulo $8$, and let $\mathcal{O}$ be the ring of integers of $K$. The prime $2$ splits in $K$, say $2\mathcal{O} = \mathfrak{p} \mathfrak{p}^\ast$, and there is a unique
For primes $q \equiv 7 \mod 16$, the present manuscript shows that elementary methods enable one to prove surprisingly strong results about the Iwasawa theory of the Gross family of elliptic curves with complex multiplication by the ring of integers
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0da34e3db7eba82a3bd16ccfc3703e21
https://www.repository.cam.ac.uk/handle/1810/322935
https://www.repository.cam.ac.uk/handle/1810/322935
Autor:
John Coates, Yongxiong Li
The paper uses Iwasawa theory at the prime $p=2$ to prove non-vanishing theorems for the value at $s=1$ of the complex $L$-series of certain quadratic twists of the Gross family of elliptic curves with complex multiplication by the field $K = \BQ(\sq
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e0bdcfc177045f72c2af77b351bd524d
https://www.repository.cam.ac.uk/handle/1810/311881
https://www.repository.cam.ac.uk/handle/1810/311881
Autor:
Yongxiong Li
Publikováno v:
Mathematical Lectures from Peking University ISBN: 9789811366635
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::73ea171f2921e8160917a381ff1c4121
https://doi.org/10.1007/978-981-13-6664-2_4
https://doi.org/10.1007/978-981-13-6664-2_4
Publikováno v:
Proceedings of the London Mathematical Society. 110:357-394
In this paper, we give the method of constructing non-torsion points on elliptic curves, which generalizes the classical Birch lemma. As an application, we get more quadratic twist families of the elliptic curve \(X_0(49)\), which have rank one. This
Autor:
Coates, John, Yongxiong Li
Publikováno v:
Proceedings of the London Mathematical Society; Dec2020, Vol. 121 Issue 6, p1531-1578, 48p