Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Yongke Qu"'
Publikováno v:
Acta Arithmetica. 201:255-267
Publikováno v:
Frontiers of Mathematics in China. 15:985-1000
Let G be a finite abelian group and S be a sequence with elements of G. We say that S is a regular sequence over G if ∣SH∣ ⩽ ∣H∣ − 1 holds for every proper subgroup H of G, where SH denotes the subsequence of S consisting of all terms of
Publikováno v:
Acta Arithmetica. 193:293-308
Publikováno v:
Journal of Combinatorial Theory, Series A. 189:105617
Autor:
Yongke Qu, Yuanlin Li
Let $G$ be a multiplicatively written finite group. We denote by $\mathsf E(G)$ the smallest integer $t$ such that every sequence of $t$ elements in $G$ contains a product-one subsequence of length $|G|$. In 1961, Erd\H{o}s, Ginzburg and Ziv proved t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::856a9c7b9ce5cab72d90ac02d5e55ead
Publikováno v:
Acta Arithmetica. 189:209-221
Autor:
Dongchun Han, Yongke Qu
Publikováno v:
International Journal of Number Theory. 13:2453-2459
Let [Formula: see text] be a finite abelian group, and [Formula: see text] be the smallest prime dividing [Formula: see text]. Let [Formula: see text] be a sequence over [Formula: see text]. We say that [Formula: see text] is regular if for every pro
Publikováno v:
Integers: Electronic Journal of Combinatorial Number Theory; 2022, Vol. 22, p1-15, 15p
Publikováno v:
Colloquium Mathematicum. 148:123-130
Autor:
Dongchun Han, Yongke Qu
Publikováno v:
International Journal of Number Theory. 12:1509-1518
Let [Formula: see text] be a finite abelian group of order [Formula: see text], and [Formula: see text] be the smallest prime dividing [Formula: see text]. Let [Formula: see text] be a sequence over [Formula: see text]. We say that [Formula: see text