Zobrazeno 1 - 10
of 143
pro vyhledávání: '"Yong-Geun Oh"'
Autor:
Yong-Geun Oh
Publikováno v:
Bulletin of Mathematical Sciences, Vol 13, Iss 01 (2023)
In [Y.-G. Oh and R. Wang, Analysis of contact Cauchy-Riemann maps I: A priori [Formula: see text] estimates and asymptotic convergence, Osaka J. Math. 55(4) (2018) 647–679; Y.-G. Oh and R. Wang, Analysis of contact Cauchy-Riemann maps II: Canonical
Externí odkaz:
https://doaj.org/article/7664289e8de94f02ae3c7f5d710f3408
Autor:
Yong-Geun Oh
Publikováno v:
Bulletin of Mathematical Sciences. 13
In [Y.-G. Oh and R. Wang, Analysis of contact Cauchy-Riemann maps I: A priori [Formula: see text] estimates and asymptotic convergence, Osaka J. Math. 55(4) (2018) 647–679; Y.-G. Oh and R. Wang, Analysis of contact Cauchy-Riemann maps II: Canonical
In 1993, M Kontsevich proposed a conceptual framework for explaining the phenomenon of mirror symmetry. Mirror symmetry had been discovered by physicists in string theory as a duality between families of three-dimensional Calabi-Yau manifolds. Kontse
Publikováno v:
Asian Journal of Mathematics. 25:117-176
This is a sequel to the authors' article [BKO](arXiv:1901.02239). We consider a hyperbolic knot $K$ in a closed 3-manifold $M$ and the cotangent bundle of its complement $M \setminus K$. We equip $M \setminus K$ with a hyperbolic metric $h$ and its c
Publikováno v:
Journal of Symplectic Geometry. 19:607-634
Publikováno v:
Kyoto Journal of Mathematics. 61
Using the bulk deformation of Floer cohomology by Schubert classes and non-Archimedean analysis of Fukaya–Oh–Ohta–Ono’s bulk-deformed potential function, we prove that every complete flag manifold Fl(n) (n≥3) with a monotone Kirillov–Kost
Autor:
Yong-Geun Oh
A-infinity structure was introduced by Stasheff in the 1960s in his homotopy characterization of based loop space, which was the culmination of earlier works of Sugawara's homotopy characterization of H-spaces and loop spaces. At the beginning of the
Autor:
Yong-Geun Oh, Hiro Lee Tanaka
We prove that, for nice classes of infinite-dimensional smooth groups G, natural constructions in smooth topology and symplectic topology yield homotopically coherent group actions of G. This yields a bridge between infinite-dimensional smooth groups
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::02a6cbe7a72ef61b6066c14cba00b811
http://arxiv.org/abs/2003.06033
http://arxiv.org/abs/2003.06033
Publikováno v:
Springer Monographs in Mathematics ISBN: 9789811555619
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::77a473297b67afdeb285a11a506c2692
https://doi.org/10.1007/978-981-15-5562-6_15
https://doi.org/10.1007/978-981-15-5562-6_15