Zobrazeno 1 - 10
of 17
pro vyhledávání: '"Yong-Feng Ge"'
Publikováno v:
Information Sciences. 612:864-886
Publikováno v:
ACM Transactions on Knowledge Discovery from Data; Jan2024, Vol. 18 Issue 1, p1-23, 23p
Publikováno v:
The VLDB Journal. 31:957-975
By breaking sensitive associations between attributes, database fragmentation can protect the privacy of outsourced data storage. Database fragmentation algorithms need prior knowledge of sensitive associations in the tackled database and set it as t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::37e4302792cbb04c15709cfb5850f2a1
Publikováno v:
Health Information Science ISBN: 9783031206269
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::37ea4bdaf33e13760731e628a0fd8aeb
https://doi.org/10.1007/978-3-031-20627-6_19
https://doi.org/10.1007/978-3-031-20627-6_19
Publikováno v:
Web Information Systems Engineering – WISE 2022 ISBN: 9783031208904
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e786701af0c856788cd034ca3fd5af47
https://doi.org/10.1007/978-3-031-20891-1_24
https://doi.org/10.1007/978-3-031-20891-1_24
Publikováno v:
IEEE transactions on cybernetics. 51(10)
Data privacy and utility are two essential requirements in outsourced data storage. Traditional techniques for sensitive data protection, such as data encryption, affect the efficiency of data query and evaluation. By splitting attributes of sensitiv
Publikováno v:
Web Information Systems Engineering – WISE 2020 ISBN: 9783030620073
WISE (2)
WISE (2)
Vertical fragmentation is a promising technique for outsourced data storage. It can protect data privacy while conserving original data without any transformation. Previous vertical fragmentation approaches need to predefine sensitive associations in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7d38daab6bd81fdc6b477ba95dd44da1
https://doi.org/10.1007/978-3-030-62008-0_15
https://doi.org/10.1007/978-3-030-62008-0_15
Distributed Differential Evolution Based on Adaptive Mergence and Split for Large-Scale Optimization
Publikováno v:
IEEE Transactions on Cybernetics. 48:2166-2180
Nowadays, large-scale optimization problems are ubiquitous in many research fields. To deal with such problems efficiently, this paper proposes a distributed differential evolution with adaptive mergence and split (DDE-AMS) on subpopulations. The nov
Publikováno v:
Knowledge-Based Systems. 229:107325
Database fragmentation can protect the distributed database’s privacy by dividing attributes of sensitive associations into different fragments. Previous database fragmentation algorithms are designed for the initialization of the distributed datab