Zobrazeno 1 - 10
of 34
pro vyhledávání: '"Yong'an, ZHANG"'
Publikováno v:
International Journal of Innovation Science, 2016, Vol. 8, Issue 1, pp. 71-88.
Externí odkaz:
http://www.emeraldinsight.com/doi/10.1108/IJIS-03-2016-004
Autor:
Guohui Shi, Yong’an Zhang, Xiwu Li, Zhihui Li, Lizhen Yan, Hongwei Yan, Hongwei Liu, Baiqing Xiong
Publikováno v:
Journal of Wuhan University of Technology-Mater. Sci. Ed.. 37:90-95
Autor:
Yong’an Zhang
Publikováno v:
Beyond Indigenization: Christianity and Chinese History in a Global Context ISBN: 9789004532120
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6b3889f7c5ea1bcc2c4819bafaf50cc6
https://doi.org/10.1163/9789004532120_021
https://doi.org/10.1163/9789004532120_021
Publikováno v:
Arabian Journal for Science and Engineering. 46:6027-6037
Precipitation behavior of Al3(Sc,Zr) particles in a new high-alloyed Al–Zn–Mg–Cu–Zr–Sc aluminum alloy during homogenization was investigated by use of three-dimensional atom probe, transition electron microscope and high-resolution transiti
Publikováno v:
ACS Applied Materials & Interfaces. 12:49101-49110
In the mixed matrix membrane (MMM), the interface between the filler and the polymer matrix will directly affect the gas separation performance of the membranes. Reasonable interfacial design in MMMs is thus important and necessary. In this work, met
Publikováno v:
Chinese Journal of Engineering Science. 25:88
Autor:
Yingying Wang, Yong'an Zhang, Yanxiao Dong, Dalu Li, Suli Shi, Shaohang Li, Linzhi Li, Yongjun He, Jianyong Li, Huoying Chen, Haiyan Ge, Yang Liu
Publikováno v:
Scientia Horticulturae. 304:111303
Autor:
Ying, Liu1,2 371468939@163.com, Yong’an, Zhang1 zhangyongan@grinm.com, Wei, Wang2, Dongsheng, Li2, Junyi, Ma2, Juan, Du2,3
Publikováno v:
Arabian Journal for Science & Engineering (Springer Science & Business Media B.V. ). Nov2018, Vol. 43 Issue 11, p6285-6295. 11p.
Publikováno v:
In Rare Metals 2007 26(1):56-61
Publikováno v:
Expert Systems with Applications. 159:113609
Deep learning is well-known for extracting high-level abstract features from a large amount of raw data without relying on prior knowledge, which is potentially attractive in forecasting financial time series. Long short-term memory (LSTM) networks a