Zobrazeno 1 - 10
of 952
pro vyhledávání: '"Yoneda's Lemma"'
Autor:
Martini, Louis
We develop some basic concepts in the theory of higher categories internal to an arbitrary $\infty$-topos. We define internal left and right fibrations and prove a version of the Grothendieck construction and of Yoneda's lemma for internal categories
Externí odkaz:
http://arxiv.org/abs/2103.17141
Autor:
Yokura, Shoji
Yoneda'e Lemma is about the canonical isomorphism of all the natural transformations from a given representable covariant (contravariant, reps.) functor (from a locally small category to the category of sets) to a covariant (contravariant, reps.) fun
Externí odkaz:
http://arxiv.org/abs/1712.02064
Autor:
Riehl, Emily, Verity, Dominic
We use the terms $\infty$-categories and $\infty$-functors to mean the objects and morphisms in an $\infty$-cosmos: a simplicially enriched category satisfying a few axioms, reminiscent of an enriched category of fibrant objects. Quasi-categories, Se
Externí odkaz:
http://arxiv.org/abs/1506.05500
Autor:
Riehl, Emily, Verity, Dominic
Publikováno v:
In Journal of Pure and Applied Algebra March 2017 221(3):499-564
Autor:
Chiţescu, Ion
Publikováno v:
Bulletin mathématique de la Société des Sciences Mathématiques de Roumanie, 2002 Jan 01. 45(3/4), 171-183.
Externí odkaz:
https://www.jstor.org/stable/43678883
Autor:
Assem, Ibrahim, Coelho, Flávio U.
Publikováno v:
An Introduction to Module Theory.
Externí odkaz:
https://doi.org/10.1093/9780198904939.003.0004
Applying Yoneda's lemma to consciousness research: categories of level and contents of consciousness
Autor:
Naotsugu Tsuchiya, Hayato Saigo
Characterizing consciousness in and of itself is notoriously difficult. Any effort to define consciousness seems to evade what it tries to achieve. In particular, definitions often involve comparisons of different kinds of “consciousness” in a se
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::2e0b46aff0e3ec306441b93d8214b8c0
https://doi.org/10.31219/osf.io/68nhy
https://doi.org/10.31219/osf.io/68nhy
Autor:
Dominic Verity, Emily Riehl
Publikováno v:
Journal of Pure and Applied Algebra. 221:499-564
We use the terms ∞-categories and ∞-functors to mean the objects and morphisms in an ∞-cosmos: a simplicially enriched category satisfying a few axioms, reminiscent of an enriched category of fibrant objects. Quasi-categories, Segal categories,
Autor:
Minami, Norihiko
Publikováno v:
数理解析研究所講究録. 1612:21-40
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.