Zobrazeno 1 - 10
of 195
pro vyhledávání: '"Yokota, Tomomi"'
In this paper we consider radially symmetric solutions of the following parabolic--elliptic cross-diffusion system \begin{equation*} \begin{cases} u_t = \Delta u - \nabla \cdot (u f(|\nabla v|^2 )\nabla v) + g(u), & \\[2mm] 0= \Delta v -m(t)+ u , \qu
Externí odkaz:
http://arxiv.org/abs/2210.05656
This paper deals with the two-species chemotaxis-competition models \begin{align*} \begin{cases} u_t = d_1 \Delta u - \chi_1 \nabla \cdot (u \nabla w) + \mu_1 u (1- u^{\kappa_1-1} - a_1 v^{\lambda_1-1}), &\quad x \in \Omega,\ t>0,\\ % v_t = d_2 \Delt
Externí odkaz:
http://arxiv.org/abs/2208.03638
Publikováno v:
In Journal of Mathematical Analysis and Applications 1 December 2024 540(1)
Autor:
Heihoff, Frederic, Yokota, Tomomi
The diffusive Lotka-Volterra predator-prey model \begin{eqnarray*} \left\{ \begin{array}{rcll} u_t &=& \nabla\cdot \left[ d_1\nabla u + \chi v^2 \nabla \Big(\dfrac{u}{v}\Big)\right] +u(m_1-u+av), \qquad & x\in\Omega, \ t>0, \\ v_t &=& d_2\Delta v+v(m
Externí odkaz:
http://arxiv.org/abs/2203.13958
Autor:
Chiyo, Yutaro, Yokota, Tomomi
This paper deals with the quasilinear attraction-repulsion chemotaxis system \begin{align*} \begin{cases} u_t=\nabla\cdot \big((u+1)^{m-1}\nabla u -\chi u(u+1)^{p-2}\nabla v +\xi u(u+1)^{q-2}\nabla w\big) +f(u), \\[1.05mm] 0=\Delta v+\alpha u-\beta v
Externí odkaz:
http://arxiv.org/abs/2107.10445
This paper deals with the fully parabolic attraction-repulsion chemotaxis system with signal-dependent sensitivities, \begin{align*} \begin{cases} u_t=\Delta u-\nabla \cdot (u\chi(v)\nabla v) +\nabla \cdot (u\xi(w)\nabla w), &x \in \Omega,\ t>0,\\[1.
Externí odkaz:
http://arxiv.org/abs/2104.00381
This paper is concerned with the attraction-repulsion chemotaxis system with superlinear logistic degradation, \begin{align*} \begin{cases} u_t = \Delta u - \chi \nabla\cdot(u \nabla v) + \xi \nabla\cdot (u \nabla w) + \lambda u - \mu u^k, \quad &x \
Externí odkaz:
http://arxiv.org/abs/2104.00212
Autor:
Chiyo, Yutaro, Yokota, Tomomi
This paper deals with the fully parabolic attraction-repulsion chemotaxis system \begin{align*} u_t=\Delta u-\chi\nabla \cdot (u\nabla v)+\xi \nabla\cdot(u \nabla w), \quad v_t=\Delta v-v+u, \quad w_t=\Delta w-w+u, \quad x \in \Omega,\ t>0 \end{align
Externí odkaz:
http://arxiv.org/abs/2103.02241
Autor:
Chiyo, Yutaro, Yokota, Tomomi
This paper deals with the quasilinear fully parabolic attraction-repulsion chemotaxis system \begin{align*} u_t=\nabla \cdot (D(u)\nabla u) -\nabla \cdot (G(u)\chi(v)\nabla v) +\nabla\cdot(H(u)\xi(w)\nabla w), \quad v_t=d_1\Delta v+\alpha u-\beta v,
Externí odkaz:
http://arxiv.org/abs/2103.02246
These notes aim to provide a deeper insight on the specifics of two articles dealing with chemotaxis models with nonlinear production. More precisely, we are referring to the papers "Boundedness of solutions to a quasilinear parabolic-parabolic chemo
Externí odkaz:
http://arxiv.org/abs/2103.00166