Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Yohan Petetin"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
IEEE Signal Processing Letters
IEEE Signal Processing Letters, Institute of Electrical and Electronics Engineers, 2021, 28, pp.1953-1957. ⟨10.1109/LSP.2021.3113279⟩
IEEE Signal Processing Letters, Institute of Electrical and Electronics Engineers, 2021, 28, pp.1953-1957. ⟨10.1109/LSP.2021.3113279⟩
International audience; Linear and Gaussian models with regime switching are popular in signal processing. In this letter, we revisit Bayesian inference in such models under the variational Bayesian framework. We propose a structured but implicit var
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8bc38f45cea9efb05e71eb830eab784e
https://hal.archives-ouvertes.fr/hal-03348244
https://hal.archives-ouvertes.fr/hal-03348244
Autor:
Yohan Petetin, Katherine Morales
Publikováno v:
SSP
Generative models based on latent random variables are a popular tool for time series forecasting. Generative models include the Hidden Markov Model, the Recurrent Neural Network and the Stochastic Recurrent Neural Network. In this paper, we exploit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c4c1231ab63c5e07a3d6e9b6fe421066
https://hal.archives-ouvertes.fr/hal-03237172
https://hal.archives-ouvertes.fr/hal-03237172
Publikováno v:
MLSP
Probabilistic graphical models such as Hidden Markov models have found many applications in signal processing. In this paper, we focus on a particular extension of these models, the Pairwise Markov models. We propose a general parametrization of the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::df53f4d4297ffba5b649c59ec0bda330
https://hal.archives-ouvertes.fr/hal-03181237
https://hal.archives-ouvertes.fr/hal-03181237
Publikováno v:
2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA)
ICMLA 2019: 18th International Conference on Machine Learning and Applications
ICMLA 2019: 18th International Conference on Machine Learning and Applications, Dec 2019, Boca Raton, FL, United States. pp.1496-1499
ICMLA
ICMLA 2019: 18th International Conference on Machine Learning and Applications
ICMLA 2019: 18th International Conference on Machine Learning and Applications, Dec 2019, Boca Raton, FL, United States. pp.1496-1499
ICMLA
International audience; Recurrent Neural Networks (RNN) and Hidden Markov Models (HMM) are popular models for processing sequential data and have found many applications such as speech recognition, time series prediction or machine translation. Altho
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b19435219adb30c80f8558bff7bd7cf4
https://hal.archives-ouvertes.fr/hal-02387002
https://hal.archives-ouvertes.fr/hal-02387002
Publikováno v:
MASCOTS
Proceedings MASCOTS 2018: 26th International Symposium on the Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
MASCOTS 2018: 26th International Symposium on the Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
MASCOTS 2018: 26th International Symposium on the Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep 2018, Milwaukee, United States. pp.237-243, ⟨10.1109/MASCOTS.2018.00031⟩
Proceedings MASCOTS 2018: 26th International Symposium on the Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
MASCOTS 2018: 26th International Symposium on the Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
MASCOTS 2018: 26th International Symposium on the Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep 2018, Milwaukee, United States. pp.237-243, ⟨10.1109/MASCOTS.2018.00031⟩
International audience; Failure prediction of industrial systems is a promising application domain for data mining approaches and should naturally rely on log messages which are a prime source of data as they are generated by many systems. However, b
Publikováno v:
Proceedings SSP 2018: IEEE Statistical Signal Processing Workshop
SSP 2018: IEEE Statistical Signal Processing Workshop
SSP 2018: IEEE Statistical Signal Processing Workshop, Jun 2018, Freiburg, Germany. pp.238-242, ⟨10.1109/SSP.2018.8450849⟩
SSP
SSP 2018: IEEE Statistical Signal Processing Workshop
SSP 2018: IEEE Statistical Signal Processing Workshop, Jun 2018, Freiburg, Germany. pp.238-242, ⟨10.1109/SSP.2018.8450849⟩
SSP
Monte Carlo methods are widely used in signal processing for computing integrals of interest. Among Monte Carlo methods, Importance Sampling is a variance reduction technique which consists in sampling from an instrumental distribution and reweightin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3088e03504b07470a4e702c82c9bf00c
https://hal.science/hal-01870199
https://hal.science/hal-01870199
Publikováno v:
IEEE Signal Processing Letters
IEEE Signal Processing Letters, Institute of Electrical and Electronics Engineers, 2018, 25 (1), pp.130-134. ⟨10.1109/LSP.2017.2775150⟩
IEEE Signal Processing Letters, 2018, 25 (1), pp.130-134. ⟨10.1109/LSP.2017.2775150⟩
IEEE Signal Processing Letters, Institute of Electrical and Electronics Engineers, 2018, 25 (1), pp.130-134. ⟨10.1109/LSP.2017.2775150⟩
IEEE Signal Processing Letters, 2018, 25 (1), pp.130-134. ⟨10.1109/LSP.2017.2775150⟩
Among Sequential Monte Carlo (SMC) methods,Sampling Importance Resampling (SIR) algorithms are based on Importance Sampling (IS) and on some resampling-based)rejuvenation algorithm which aims at fighting against weight degeneracy. However %whichever
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::49cb5a62d1730679a0f06610ed24eda0
https://hal.archives-ouvertes.fr/hal-01670395
https://hal.archives-ouvertes.fr/hal-01670395
Autor:
Nicolas Aussel, Samuel Jaulin, Sophie Chabridon, Guillaume Gandon, Eriza Fazli, Yohan Petetin
Publikováno v:
Proceedings ICMLA 2017 : 16th IEEE International Conference On Machine Learning And Applications
ICMLA 2017 : 16th IEEE International Conference On Machine Learning And Applications
ICMLA 2017 : 16th IEEE International Conference On Machine Learning And Applications, Dec 2017, Cancun, Mexico. pp.619-625, ⟨10.1109/ICMLA.2017.00-92⟩
ICMLA
ICMLA 2017 : 16th IEEE International Conference On Machine Learning And Applications
ICMLA 2017 : 16th IEEE International Conference On Machine Learning And Applications, Dec 2017, Cancun, Mexico. pp.619-625, ⟨10.1109/ICMLA.2017.00-92⟩
ICMLA
International audience; Hard drives are an essential component of modern data storage. In order to reduce the risk of data loss, hard drive failure prediction methods using the Self-Monitoring, Analysis and Reporting Technology attributes have been p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4adf29d8e3295159c96090126c8dbd77
https://hal.archives-ouvertes.fr/hal-01703140
https://hal.archives-ouvertes.fr/hal-01703140
Publikováno v:
2016 IEEE Workshop on Statistical Signal Processing (SSP 16)
2016 IEEE Workshop on Statistical Signal Processing (SSP 16), Jun 2016, Palma de Mallorca, Spain
SSP
2016 IEEE Workshop on Statistical Signal Processing (SSP 16), Jun 2016, Palma de Mallorca, Spain
SSP
International audience; Sequential Monte Carlo (SMC) algorithms are based on importance sampling (IS) techniques. Resampling has been introduced as a tool for fighting the weight degeneracy problem. However, for a fixed sample size N, the resampled p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::630dff84692e8224b2235977f6e9494a
https://imt.hal.science/hal-01359095
https://imt.hal.science/hal-01359095