Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Ying-Xin Cui"'
Publikováno v:
Electronic Journal of Differential Equations, Vol 2016, Iss 198,, Pp 1-18 (2016)
In this article, we study a class of fractional differential inclusions problem. By nonsmooth variational methods and the theory of the fractional derivative spaces, we establish the existence of infinitely many positive solutions of the problem u
Externí odkaz:
https://doaj.org/article/1c400a93af994b019d562374146cf1f2
Autor:
Ying-Xin Cui
Publikováno v:
Guoji Yanke Zazhi, Vol 16, Iss 1, Pp 51-54 (2016)
AIM:To investigate the risk factors and long-term changes of non-arteritis anterior ischaemic optic neuropathy(NAION). METHODS:Three hundred and sixty cases of patients with NAION in our hospital from January 2010 to Juny 2015 were used as patients g
Externí odkaz:
https://doaj.org/article/1904f8b5451847f68f3f76921c7a0bec
Autor:
Zhi-Qiang Wang, Ying-Xin Cui
Publikováno v:
Advanced Nonlinear Studies. 21:41-56
In this paper, we study the existence of multiple periodic solutions for the following fractional equation: ( - Δ ) s u + F ′ ( u ) = 0 , u ( x ) = u ( x + T ) x ∈ ℝ . (-\Delta)^{s}u+F^{\prime}(u)=0,\qquad u(x)=u(x+T)\quad x\in
Autor:
Wan Shun Zhao, Guo Sheng Sun, Feng Zhang, Guo Guo Yan, Xingfang Liu, Lei Wang, Zhan Wei Shen, Ying Xin Cui, Jun Tao Li
Publikováno v:
Materials Science Forum. 954:31-34
Homoepitaxial growths of 4H-SiC were performed on Si-face (0001) on-axis substrates in a SiH4-C2H4-H2-HCl system by using our home-made vertical hot wall CVD reactor. The influence mechanism of the growth temperature and C/Si ratio on the morphology
Autor:
Ying-Xin Cui, Jiankang Xia
We study the saddle solutions for the fractional Choquard equation \begin{align*} (-\Delta)^{s}u+ u=(K_{\alpha}\ast|u|^{p})|u|^{p-2}u, \quad x\in \mathbb{R}^N \end{align*} where $s\in(0,1)$, $N\geq 3$ and $K_\alpha$ is the Riesz potential with order
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c68660f82a1bb26521ac461b933d81a7
http://arxiv.org/abs/2105.12627
http://arxiv.org/abs/2105.12627
Publikováno v:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 113:657-673
In this paper, we study the existence of nontrivial solution to a quasi-linear problem $$\begin{aligned} (-\Delta )_{p}^{s} u+ V(x)|u|^{p-2}u=Q(x)f(x,u),\quad x\in {\mathbb {R}}^{N}, \end{aligned}$$ where $$\begin{aligned} (-\Delta )_{p}^{s} u(x)=2\l
Publikováno v:
Positivity. 22:873-895
In this paper, we study the existence of nontrivial solution to a quasi-linear problem where $$ (-\Delta )_{p}^{s} u(x)=2\lim \nolimits _{\epsilon \rightarrow 0}\int _{\mathbb {R}^N \backslash B_{\varepsilon }(X)} \frac{|u(x)-u(y)|^{p-2} (u(x)-u(y))}
Autor:
Ying-Xin Cui
Publikováno v:
Journal of Mathematical Analysis and Applications. 500:125152
In this paper, we study the following fractional Choquard equation ( − Δ ) s u + u = ( K α ⁎ | u | p ) | u | p − 2 u , x ∈ R N . Using variational methods on Nehari manifold, we prove that there is an odd solution for this equation under an
Publikováno v:
Open Mathematics, Vol 15, Iss 1, Pp 1010-1023 (2017)
In this paper, we study the existence of nontrivial solutions to a class fractional Schrödinger equations$$ {( - \Delta )^s}u + V(x)u = \lambda f(x,u)\,\,{\rm in}\,\,{\mathbb{R}^N}, $$where$ {( - \Delta )^s}u(x) = 2\lim\limits_{\varepsilon \to 0} \i
Publikováno v:
Guang pu xue yu guang pu fen xi = Guang pu. 36(4)
Laser micromachining has proven to be a useful tool for precision processing of semiconductors. For Silicon Carbide (SiC) single crystals, ablation with ultraviolet wavelength laser could lead to the maximum absorption efficiency of incident energy.