Zobrazeno 1 - 10
of 90
pro vyhledávání: '"Ying-Ren Chien"'
Publikováno v:
Mathematics, Vol 12, Iss 20, p 3259 (2024)
This paper introduces a novel leader–follower formation control strategy for autonomous vehicles, aimed at achieving precise trajectory tracking in uncertain environments. The approach is based on a graph guidance law that calculates the desired ya
Externí odkaz:
https://doaj.org/article/c4c6590a808145cf887bd5dc185da67b
Publikováno v:
Mathematics, Vol 12, Iss 18, p 2936 (2024)
Few-shot semantic segmentation (FSS) models aim to segment unseen target objects in a query image with scarce annotated support samples. This challenging task requires an effective utilization of support information contained in the limited support s
Externí odkaz:
https://doaj.org/article/31afb0c81b3f4631bba276d857341d65
Publikováno v:
Mathematics, Vol 12, Iss 17, p 2761 (2024)
Few-Shot Semantic Segmentation (FSS) has drawn massive attention recently due to its remarkable ability to segment novel-class objects given only a handful of support samples. However, current FSS methods mainly focus on natural images and pay little
Externí odkaz:
https://doaj.org/article/a6eb8724bf884656bd8680b75af66112
Publikováno v:
Mathematics, Vol 12, Iss 9, p 1310 (2024)
Input noise causes inescapable bias to the weight vectors of the adaptive filters during the adaptation processes. Moreover, the impulse noise at the output of the unknown systems can prevent bias compensation from converging. This paper presents a r
Externí odkaz:
https://doaj.org/article/02ddd69203934f739a17e7ed52472e7b
Publikováno v:
Sensors, Vol 23, Iss 7, p 3454 (2023)
Autonomous driving technology has not yet been widely adopted, in part due to the challenge of achieving high-accuracy trajectory tracking in complex and hazardous driving scenarios. To this end, we proposed an adaptive sliding mode controller optimi
Externí odkaz:
https://doaj.org/article/fd358766745d457380dfdea68cbc8b6c
Autor:
Francesco Potorti, Sangjoon Park, Antonino Crivello, Filippo Palumbo, Michele Girolami, Paolo Barsocchi, Soyeon Lee, Joaquin Torres-Sospedra, Antonio Ramon Jimenez Ruiz, Antoni Perez-Navarro, German Martin Mendoza-Silva, Fernando Seco, Miguel Ortiz, Johan Perul, Valerie Renaudin, Hyunwoong Kang, Soyoung Park, Jae Hong Lee, Chan Gook Park, Jisu Ha, Jaeseung Han, Changjun Park, Keunhye Kim, Yonghyun Lee, Seunghun Gye, Keumryeol Lee, Eunjee Kim, Jeong-Sik Choi, Yang-Seok Choi, Shilpa Talwar, Seong Yun Cho, Boaz Ben-Moshe, Alex Scherbakov, Leonid Antsfeld, Emilio Sansano-Sansano, Boris Chidlovskii, Nikolai Kronenwett, Silvia Prophet, Yael Landay, Revital Marbel, Lingxiang Zheng, Ao Peng, Zhichao Lin, Bang Wu, Chengqi Ma, Stefan Poslad, David R. Selviah, Wei Wu, Zixiang Ma, Wenchao Zhang, Dongyan Wei, Hong Yuan, Jun-Bang Jiang, Shao-Yung Huang, Jing-Wen Liu, Kuan-Wu Su, Jenq-Shiou Leu, Kazuki Nishiguchi, Walid Bousselham, Hideaki Uchiyama, Diego Thomas, Atsushi Shimada, Rin-Ichiro Taniguchi, Vicente Cortes Puschel, Tomas Lungenstrass Poulsen, Imran Ashraf, Chanseok Lee, Muhammad Usman Ali, Yeongjun Im, Gunzung Kim, Jeongsook Eom, Soojung Hur, Yongwan Park, Miroslav Opiela, Adriano Moreira, Maria Joao Nicolau, Cristiano Pendao, Ivo Silva, Filipe Meneses, Antonio Costa, Jens Trogh, David Plets, Ying-Ren Chien, Tzu-Yu Chang, Shih-Hau Fang, Yu Tsao
Publikováno v:
IEEE Access, Vol 8, Pp 206674-206718 (2020)
IPIN 2019 Competition, sixth in a series of IPIN competitions, was held at the CNR Research Area of Pisa (IT), integrated into the program of the IPIN 2019 Conference. It included two on-site real-time Tracks and three off-site Tracks. The four Track
Externí odkaz:
https://doaj.org/article/ddebc0d9f3ed4c6588ee35f1b72991b9
Publikováno v:
Sensors, Vol 23, Iss 3, p 1445 (2023)
The Special Issue “Signal Processing and Machine Learning for Smart Sensing Applications” focused on the publication of advanced signal processing methods by means of state-of-the-art machine learning technologies for smart sensing applications [
Externí odkaz:
https://doaj.org/article/0d566985203845d5897fbb6ec5831f6b
Autor:
Jingwei Tang, Ying-Ren Chien
Publikováno v:
Sensors, Vol 22, Iss 19, p 7414 (2022)
Wind energy reserves are large worldwide, but their randomness and volatility hinder wind power development. To promote the utilization of wind energy and improve the accuracy of wind power prediction, we comprehensively consider the influence of win
Externí odkaz:
https://doaj.org/article/fcbc476c17c347f8ba9a328680560e63
Autor:
Valerie Renaudin, Miguel Ortiz, Johan Perul, Joaquin Torres-Sospedra, Antonio Ramon Jimenez, Antoni Perez-Navarro, German Martin Mendoza-Silva, Fernando Seco, Yael Landau, Revital Marbel, Boaz Ben-Moshe, Xingyu Zheng, Feng Ye, Jian Kuang, Yu Li, Xiaoji Niu, Vlad Landa, Shlomi Hacohen, Nir Shvalb, Chuanhua Lu, Hideaki Uchiyama, Diego Thomas, Atsushi Shimada, Rin-Ichiro Taniguchi, Zhenxing Ding, Feng Xu, Nikolai Kronenwett, Blagovest Vladimirov, Soyeon Lee, Eunyoung Cho, Sungwoo Jun, Changeun Lee, Sangjoon Park, Yonghyun Lee, Jehyeok Rew, Changjun Park, Hyeongyo Jeong, Jaeseung Han, Keumryeol Lee, Wenchao Zhang, Xianghong Li, Dongyan Wei, Ying Zhang, So Young Park, Chan Gook Park, Stefan Knauth, Georgios Pipelidis, Nikolaos Tsiamitros, Tomas Lungenstrass, Juan Pablo Morales, Jens Trogh, David Plets, Miroslav Opiela, Shih-Hau Fang, Yu Tsao, Ying-Ren Chien, Shi-Shen Yang, Shih-Jyun Ye, Muhammad Usman Ali, Soojung Hur, Yongwan Park
Publikováno v:
IEEE Access, Vol 7, Pp 148594-148628 (2019)
The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a sy
Externí odkaz:
https://doaj.org/article/a6e635a75ba748f989a38f64c3d6bf55
Autor:
Wei-Lung Mao, Yu-Ying Chiu, Bing-Hong Lin, Chun-Chi Wang, Yi-Ting Wu, Cheng-Yu You, Ying-Ren Chien
Publikováno v:
Sensors, Vol 22, Iss 10, p 3927 (2022)
Automated inspection has proven to be the most effective approach to maintaining quality in industrial-scale manufacturing. This study employed the eye-in-hand architecture in conjunction with deep learning and convolutional neural networks to automa
Externí odkaz:
https://doaj.org/article/865a329ccd4c46c3bd83d17cc40a0911