Zobrazeno 1 - 10
of 102
pro vyhledávání: '"Yidu Yang"'
Publikováno v:
AIMS Mathematics, Vol 9, Iss 2, Pp 3332-3348 (2024)
The biharmonic equation/eigenvalue problem is one of the fundamental model problems in mathematics and physics and has wide applications. In this paper, for the biharmonic eigenvalue problem, based on the work of Gudi [Numer. Methods Partial Differ.
Externí odkaz:
https://doaj.org/article/b872a63540b04705a09d891d40018b72
Publikováno v:
AIMS Mathematics, Vol 8, Iss 9, Pp 21270-21297 (2023)
For a class of Stokes eigenvalue problems including the classical Stokes eigenvalue problem and the magnetohydrodynamic Stokes eigenvalue problem a residual type a posteriori error estimate of the mixed discontinuous Galerkin finite element method us
Externí odkaz:
https://doaj.org/article/a470841eebdd42e2a97a2f167296f5c1
Publikováno v:
Journal of Inequalities and Applications, Vol 2018, Iss 1, Pp 1-21 (2018)
Abstract This paper is devoted to the adaptive Morley element algorithms for a biharmonic eigenvalue problem in Rn $\mathbb{R}^{n}$ ( n≥2 $n\geq2$). We combine the Morley element method with the shifted-inverse iteration including Rayleigh quotient
Externí odkaz:
https://doaj.org/article/9f9dfa44ce8246ddac4f643a774654e6
Publikováno v:
Mathematics, Vol 8, Iss 8, p 1252 (2020)
This paper uses a locking-free nonconforming Crouzeix–Raviart finite element to solve the planar linear elastic eigenvalue problem with homogeneous pure displacement boundary condition. Making full use of the Poincaré inequality, we obtain the gua
Externí odkaz:
https://doaj.org/article/11243b3526d74857aeca2669efcb141a
Publikováno v:
Abstract and Applied Analysis, Vol 2014 (2014)
We establish Crouzeix-Raviart element adaptive algorithm based on Rayleigh quotient iteration and give its a priori/a posteriori error estimates. Our algorithm is performed under the package of Chen, and satisfactory numerical results are obtained.
Externí odkaz:
https://doaj.org/article/80936e2eead645ef8773635d1d264e45
Publikováno v:
Abstract and Applied Analysis, Vol 2013 (2013)
This paper discusses spectral and spectral element methods with Legendre-Gauss-Lobatto nodal basis for general 2nd-order elliptic eigenvalue problems. The special work of this paper is as follows. (1) We prove a priori and a posteriori error estimate
Externí odkaz:
https://doaj.org/article/d349a88d78da456694a33f5320788673
Publikováno v:
Abstract and Applied Analysis, Vol 2012 (2012)
This paper discusses highly efficient discretization schemes for mixed variational formulation of eigenvalue problems. A new finite element two-scale discretization scheme is proposed by combining the mixed finite element method with the shifted-inve
Externí odkaz:
https://doaj.org/article/3f6dbb6db2374013b83bb2840ac63409
Publikováno v:
Abstract and Applied Analysis, Vol 2012 (2012)
This paper discusses highly finite element algorithms for the eigenvalue problem of electric field. Combining the mixed finite element method with the Rayleigh quotient iteration method, a new multi-grid discretization scheme and an adaptive algorith
Externí odkaz:
https://doaj.org/article/7b53eb916a0b4409b02833d29d8ab44b
Publikováno v:
Mathematical Methods in the Applied Sciences. 46:6154-6176
Publikováno v:
Journal of Scientific Computing. 96