Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Yevgeniia A. Yevgenieva"'
Autor:
Yevgeniia A. Yevgenieva
Publikováno v:
Journal of Mathematical Sciences. 249:804-816
We study the quasilinear parabolic equation (|u|q − 1u)t − Δpu = 0 in a multidimensional domain (0; T) × Ω under the condition u(t; x) = f(t; x) on (0; T) × 𝜕Ω, where the boundary function f blows-up at a finite time T, i.e., f(t; x) →
Publikováno v:
Journal of Mathematical Sciences. 244:95-103
The equation of slow diffusion with singular boundary data is considered. An estimate of all weak solutions of such a problem is obtained, provided that the boundary regime is localized. The comparative analysis of the results obtained by the method
Publikováno v:
Mathematical Notes. 106:639-650
Singular blow-up regimes are studied for a wide class of second-order quasilinear parabolic equations. Energy methods are used to obtain exact (in a certain sense) estimates of the final profile of the generalized solution near the blow-up time depen
Autor:
Yevgeniia O. Yevgenieva
Publikováno v:
Journal of Mathematical Sciences. 242:457-468
Quasilinear parabolic equations with a degenerate absorption potential are considered. The estimates of all weak solutions of such equations, including large solutions satisfying the blow-up conditions on the parabolic boundary of a domain, are obtai
Publikováno v:
Mathematische Nachrichten. 292:1349-1374
Publikováno v:
Matematicheskie Zametki. 106:622-635
Изучаются режимы с сингулярным обострением для широкого класса квазилинейных параболических уравнений второго порядка. На основе энер
Autor:
Yevgeniia A. Yevgenieva
Publikováno v:
Journal of Mathematical Sciences. 234:106-116
The paper deals with energy (weak) solutions u (t; x) of the class of equations with the model representative $$ \left(\left|u\right|{p}^{-1}u\right)t-\Delta p(u)=0,\kern0.5em \left(t,x\right)\in \left(0,T\right)\times \varOmega, \varOmega \in {\math