Zobrazeno 1 - 10
of 42
pro vyhledávání: '"Yevgenieva, Yevgeniia A."'
We investigate a nonlinear parabolic partial differential equation whose boundary conditions contain a single control input. This model describes a chemical reaction of the type ''$A \to $ product'', occurring in a dispersed flow tubular reactor. The
Externí odkaz:
http://arxiv.org/abs/2411.11550
This paper presents sufficient conditions for small-time local controllability of a control-affine system that describes the rotational motion of a satellite in a circular orbit. The satellite is modeled as a rigid body subject to electromagnetic act
Externí odkaz:
http://arxiv.org/abs/2408.00697
We consider a mathematical model of an orbiting satellite, comprising a rigid carrier body and a flexible boom, operating under the influence of gravity gradient torque. This model is represented by a nonlinear control system, which includes ordinary
Externí odkaz:
http://arxiv.org/abs/2311.09691
Publikováno v:
Journal of Optimization Theory and Applications, 2024
We study a class of nonlinear hyperbolic partial differential equations with boundary control. This class describes chemical reactions of the type ``$A \to$ product'' carried out in a plug flow reactor (PFR) in the presence of an inert component. An
Externí odkaz:
http://arxiv.org/abs/2308.04804
In the case $q> p\dfrac{n+2}{n}$, we give a proof of the weak Harnack inequality for non-negative super-solutions of degenerate double-phase parabolic equations under the additional assumption that $u\in L^{s}_{loc}(\Omega_{T})$ with some $s >p\dfrac
Externí odkaz:
http://arxiv.org/abs/2305.13053
We prove the weak Harnack inequality for the functions $u$ which belong to the corresponding De Giorgi classes $DG^{-}(\Omega)$ under the additional assumption that $u\in L^{s}_{loc}(\Omega)$ with some $s> 0$. In particular, our result covers new cas
Externí odkaz:
http://arxiv.org/abs/2304.04499
We prove Harnack's type inequalities for bounded non-negative solutions of degenerate parabolic equations with $(p,q)$ growth $$ u_{t}-{\rm div}\left(\mid \nabla u \mid^{p-2}\nabla u + a(x,t) \mid \nabla u \mid^{q-2}\nabla u \right)=0,\quad a(x,t) \g
Externí odkaz:
http://arxiv.org/abs/2301.08501
We study the qualitative properties of functions belonging to the corresponding De Giorgi classes \begin{equation*} \int\limits_{B_{r(1-\sigma)}(x_{0})}\,\varPhi(x, |\nabla(u-k)_{\pm}|)\,dx \leqslant \gamma\,\int\limits_{B_{r}(x_{0})}\,\varPhi\bigg(x
Externí odkaz:
http://arxiv.org/abs/2210.02178
Autor:
Skrypnik, Igor, Yevgenieva, Yevgeniia
We prove continuity and Harnack's inequality for bounded solutions to the equation $$ {\rm div}\big(|\nabla u|^{p(x)-2}\,\nabla u \big)=0, \quad p(x)= p + L\frac{\log\log\frac{1}{|x-x_{0}|}}{\log\frac{1}{|x-x_{0}|}},\quad L > 0, $$ under the precise
Externí odkaz:
http://arxiv.org/abs/2208.01970
Publikováno v:
In Journal of Mathematical Analysis and Applications 15 September 2024 537(2)