Zobrazeno 1 - 10
of 1 806
pro vyhledávání: '"Yeh, Cheng"'
Deep learning models are known to be vulnerable to adversarial attacks by injecting sophisticated designed perturbations to input data. Training-time defenses still exhibit a significant performance gap between natural accuracy and robust accuracy. I
Externí odkaz:
http://arxiv.org/abs/2410.16805
Autor:
Li, Jonathan Weiping, Liang, Ren-Wei, Yeh, Cheng-Han, Tsai, Cheng-Chang, Yu, Kuanchun, Lu, Chun-Shien, Chen, Shang-Tse
This paper examines the phenomenon of probabilistic robustness overestimation in TRADES, a prominent adversarial training method. Our study reveals that TRADES sometimes yields disproportionately high PGD validation accuracy compared to the AutoAttac
Externí odkaz:
http://arxiv.org/abs/2410.07675
Semi-supervised learning (SSL) has achieved remarkable performance with a small fraction of labeled data by leveraging vast amounts of unlabeled data from the Internet. However, this large pool of untrusted data is extremely vulnerable to data poison
Externí odkaz:
http://arxiv.org/abs/2407.10180
Autor:
Le, Hoang-Hiep, Baig, Md. Aftab, Hong, Wei-Chen, Tsai, Cheng-Hsien, Yeh, Cheng-Jui, Liang, Fu-Xiang, Huang, I-Ting, Tsai, Wei-Tzu, Cheng, Ting-Yin, De, Sourav, Chen, Nan-Yow, Lee, Wen-Jay, Lin, Ing-Chao, Chang, Da-Wei, Lu, Darsen D.
This paper presents a simulation platform, namely CIMulator, for quantifying the efficacy of various synaptic devices in neuromorphic accelerators for different neural network architectures. Nonvolatile memory devices, such as resistive random-access
Externí odkaz:
http://arxiv.org/abs/2306.14649
Autor:
Yeh, Cheng-Hsien1,2 (AUTHOR) n28084012@mail.ncku.edu.tw, Hsu, Hung-Chieh1,3 (AUTHOR) n28084020@gs.ncku.edu.tw, Tsao, Jung-Che1,3 (AUTHOR) jerry881015@gmail.com, Wu, Hsuan-Ta4 (AUTHOR) htwu@must.edu.tw, Lin, Teh-Pei5 (AUTHOR) drtplin@gmail.com, Wu, Chien-Te5 (AUTHOR) ctwu168@gmail.com, Wu, Shih-Hsiung3 (AUTHOR) shihhsiung@itri.org.tw, Shih, Chuan-Feng1,2,6 (AUTHOR) shihhsiung@itri.org.tw
Publikováno v:
Materials (1996-1944). Dec2024, Vol. 17 Issue 23, p5739. 14p.
Autor:
Yeh, Cheng-Hsien, Hu, Chia-Hua, Wu, Hsuan-Ta, Hsu, Wen-Dung, Liu, Bernard Haochih, Liaw, Peter K., Shih, Chuan-Feng
Publikováno v:
In Materials Today Advances December 2024 24
Autor:
Huang, Zih-Lie, Yeh, Cheng-Hsien, Wang, Ming-Yao, Lau, Vincent Wing-hei, Tian, Hong-Kang, Shih, Chuan-Feng
Publikováno v:
In Materials Today Advances December 2024 24
Autor:
Hang, Jen-Fan, Ou, Yen-Chuan, Yang, Wei-Lei, Tsao, Tang-Yi, Yeh, Cheng-Hung, Li, Chi-Bin, Hsu, En-Yu, Hung, Po-Yen, Hwang, Yi-Ting, Liu, Tien-Jen, Tung, Min-Che
Publikováno v:
In Journal of Pathology Informatics December 2024 15
Autor:
Lee, Ing-Kit, Chang, Po-Hsun, Yeh, Cheng-Hsi, Li, Wei-Feng, Yin, Shih-Min, Lin, Yu-Cheng, Tzeng, Wei-Juo, Chen, Chao-Long, Lin, Chih-Che, Wang, Chih-Chi
Publikováno v:
In Journal of Microbiology, Immunology and Infection October 2024 57(5):771-781
Autor:
Hou, Teng-Yuan, Komorowski, Andrzej L., Lin, Tsan-Shiun, Lin, Yu-Cheng, Sng, Yi-Ping, Yeh, Cheng-Hsi, Li, Wei-Feng, Lin, Chih-Che, Wang, Chih-Chi
Publikováno v:
In HPB July 2024 26(7):928-937